在绝大多数地方,这篇论文在学院的决策过程中并不是一个大的变量。
At the vast majority of places, the essay is simply not a big variable in the college's decision-making process.
原材料也作为一个产品列出来,这样所有的决策变量都可以在一个集合中了。
Raw material is listed as a product so that all the decision variables can be in one set.
这个非常简单的程序声明了两个决策变量:约束和目标函数。
This very simple program declares the two decision variables: the constraint and the objective function.
请注意所有的决策变量都是0或1,这与我们期望的一样。
Note that all the decision variables are either 0 or 1, as expected.
我们可能会纳闷,在有更多决策变量和约束的问题中,我们只能分别逐一声明每个变量和每个约束吗?
You may be wondering, in a problem with many more decision variables and constraints, would you have to declare each variable and each constraint separately?
噢,这个问题是如此简单,问题数据都作为声明中决策变量的系数直接包含在了目标函数和约束声明中。
Well, this problem is so simple that the problem data is directly included in the objective function and constraints declarations as the coefficients of the decision variables in the declarations.
第三部分给出了每个决策变量的值。
第20行的目标函数要对食物的总体成本实现最小化,该值是每个决策变量(食物数量)乘以每单位食物成本的结果。
The objective function on line 20 minimizes the total food cost as the total of each decision variable (amount of food) multiplied by that food's cost per unit.
请注意约束和决策变量现在在TOY 后面是如何命名的,这样看起来非常清晰,而且组织良好。
Note how the constraints and the decision variables are now named after the TOY set, which looks clean and organized.
有了这两个决策变量,它就有了两个维度。
问题决策变量。
第三部分给出了决策变量的值。
The third section shows the values of the decision variables.
放松限制的目标函数(不将决策变量当作整数考虑)的优化值同时也给出来了。
The optimal value of the relaxed objective function (the one that didn't consider the decision variables as integers) is also printed here.
集合覆盖问题涉及的是二元决策变量;也就是说,它们的值只能是0或1、yes或no。
The set covering problem teaches binary decision variables; that is, they can only be 0 or 1, yes or no.
决策变量的声明以关键字var开头。
A decision variable declaration begins with the keyword var.
有关决策变量的优化值的确切信息。
Precise information about the optimal values for the decision variables.
接下来我们了解了如何使用一个简单的MathProg程序来使用集合、参数、约束、决策变量和目标函数来解答这个问题。
Then you saw how to use a simple MathProg program to solve it using sets, parameters, constraints, decision variables, and an objective (target) function.
邮局问题中引入了MathProg表达式和只使用整型的决策变量。
The post office problem introduced MathProg expressions and integer-only decision variables.
注意编写7个不等式作为5个不必有序的决策变量的和太过繁琐了,因为在某些约束中,索引可能会覆盖索引值7。
Note that it would be too boring to write seven inequalities as a sum of five decision variables that are not necessarily in order, because in some constraints, the index may overlap the index 7.
报告的第三部分则给出了决策变量的优化值:3份冰激凌和1瓶可乐。
The third section reports the optimal values of the decision variables: 3 scoops of ice cream and one bottle of soda.
第一个MathProg步骤是声明决策变量。
The first MathProg step is to declare the decision variables.
第14行定义了决策变量,这是一个包含5个元素的PROD集合的数组。
Line 14 defines the decision variables, a five-element array on the PROD set.
第15行将决策变量声明为一个数组,它有七个变量,索引在DAYS集合中定义;分别表示从该天开始工作的员工数目。
Line 15 declares the decision variables as an array of seven variables defined on the DAYS set, representing the number of people that start work that day.
这个问题的核心是将决策变量声明成二元变量。
The heart of this problem is the declaration of the decision variables as binary variables.
第17行声明了决策变量,并声明每个决策变量都不能是负数。
Line 17 declares the decision variables and states that each of them can't be a negative value.
GLPK必须要将这些决策变量全部当作整型变量进行考虑。
GLPK has to consider the decision variables as integer variables.
通过对优化结果的分析,可以看出主要决策变量对制冷、制热成本的影响。
The influence of the main decision variables on the refrigeration and heating costs can be found by analyzing the optimization results.
销售费用被作为决策变量。
这个方程式应该明确的定义决策变量、约束条件和目标函数。
The mathematical formulations should clearly define the decision variables, the constraints, and the objective function.
利用映射图象可以直观地剔除异常样本数据、选择优化决策变量和预测最优操作点和优化方向。
Using this mapping image can visually eliminate abnormal sample data, select decision variables and predict optimal operating point and direction for an industrial process.
应用推荐