运动的变换不是必须共面的,也不必须是同心的。
The motion transformation is not necessary coplanar, nor must it be concentric.
本文给出在非共面椭圆轨道上运行的航天器的伴随运动方程。
This paper presents some equations of adjoint motion for spacecrafts moving in elliptic orbit of different plane.
共面编队飞行的卫星星座的相对运动轨迹是一个椭圆,但卫星由于受摄动力的影响,其椭圆队形会发生变化。
The figure of the relative kinematical track of the formation flying will change which is in an ellipse because of the disturbing force from which the satellites suffer.
基于解析相对运动分析共面主从编队、跟随编队、圆形编队等模式中的初始轨道参数对编队构型的影响。
Analytic relative motions are analyzed for in-plane formation, leader-follower formation, circular formation, and the effects of different initial values.
采用不共面的非线性定标模型和考虑运动不确定性的三维重建方法,能恢复逼真的三维人体骨架模型。
A non-coplanar nonlinear calibration model and a reconstruction approach taken uncertainty into consideration are applied to restore 3d human skeleton model.
采用不共面的非线性定标模型和考虑运动不确定性的三维重建方法,能恢复逼真的三维人体骨架模型。
A non-coplanar nonlinear calibration model and a reconstruction approach taken uncertainty into consideration are applied to restore 3d human skeleton model.
应用推荐