证明了在充分相交的代数流形上任意次插值适定结点组的存在性;
The existence of properly posed set of nodes of arbitrary degree for interpolation on the algebraic manifold of sufficient intersection was proved.
结合李群李代数方法,系统地研究了多特征的位形空间理论,给出了定向公差约束子流形的局部参数显式表达。
A systematic introduction to the theory of configuration space of multi-features is given, appealing to Lie groups and algebras.
提出了一个非流形结构的表示方法——粘合边结构,其数学基础是代数拓扑中的复形理论。
An identification edge structure is put forward to represent non manifold modeling, which is built on the concepts and methods of the complex and CW complex in algebraic topology.
李群机器学习(LML)既继承了流形学习的优点,又充分利用了李群的代数结构和几何结构的数学本质,自提出以来就引起了许多研究者的关注。
Lie group Machine learning (LML) inherit the advantages of manifold learning method and make full use of the Lie group's structure of algebraic and geometry in mathematics.
利用黎曼对称空间同正交对称李代数之间的密切关系及一个矩阵不等式给出了一个复流形上截面曲率的上界的精确估计。
We used the relationship of the Riemann symmetric space and the symmetric algebra, a matrix inequality to provided a estimate sectional curvature of a complex manifold.
李三系作为一种代数体系,最初源于对黎曼流形的一类特殊子空间——全测地子流形的研究。
As an algebraic system, Lie triple systems arise upon consideration of certain sub-spaces of Riemannian manifolds, the totally geodesic submanifolds.
讨论特殊半对称联络的黎曼流形,给出了该流形曲率张量的一个代数结构。
In the present paper, the algebra property of Riemannian manifold which is contained some special semi symmetric connection is given.
讨论特殊半对称联络的黎曼流形,给出了该流形曲率张量的一个代数结构。
In the present paper, the algebra property of Riemannian manifold which is contained some special semi symmetric connection is given.
应用推荐