没有三角学和代数学的知识你不会理解微积分。
You can’t do a calculus class without first taking (and understanding) an Algebra and a Trigonometry class.
明天我有一个关于代数学的数学考试。
从现代数学的角度看来,它们都是符号。
From a modern mathematical point of view, they were all alike symbols.
函数逼近论是现代数学的一个重要分支。
The approximation theory of functions is one of the important branches of modern mathematics.
代数学的拓扑是透过代数空间的全球特性的研究。
Algebraic topology is the study of the global properties of Spaces by means of algebra.
卷整体上是迷人并且令人激动的当代数学的概述。
The volume as a whole is a fascinating and exciting overview of contemporary mathematics.
在断裂问题的理论研究中经常用到近代数学的理论和方法。
The theory and method of modern mathematics are used in the theoretical research for fracture problem usually.
工作来自代数学的量子理论和从几个变量的复分析基于技术。
The work is based on techniques from algebraic quantum theory and from complex analysis of several variables.
许多申请被描述,包括象代数学的几何学和金融市场一样不同的领域。
Numerous applications are described, covering fields as disparate as algebraic geometry and financial markets.
它是现代数学的一个重要分支,是计算机专业基础理论的核心课程之一。
It is important subject of modern mathematics, one of core courses in computer science and technology.
当代数学的论证过程往往错综复杂,需要用上很多不同的步骤、成分和符号。
A typical argument in modern mathematics is often quite intricate, requiring many different steps, ingredients, and notation.
直达数论和量组,题目由于计算的复杂性,代数学的几何学,力学包括范围。
Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups.
在评价体系中引入代数学的集合概念和运算方法,能使评价体系更加全面、合理。
By introducing the conception and operation of Muster, the system of evaluation will be made more rational and comprehensive.
由于集值算子在现代数学的广泛应用,本文还研讨了关于集值算子方程解的存在性;
Due to the wide applications of setvalued operators in modern mathematics, the solvability of the setvalued operator equations are studied.
算法对于数学教育也有着重要的作用,同时也是中国古代数学的重要思想和主要特征。
Algorithm also has an important role in the mathematical education, and represents the important thoughts and main characteristics of the Chinese ancient mathematics.
近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵论中寻找到它们的根源。
Some subjects of modern mathematics, such as the algebraic structure theory and functional analysis, would be found in the Matrix theory.
数学的整体结构思想是在中国本土的儒家文化环境中形成的对现代数学的看法与处理方式。
Mathematical integral structure thought came into being under the environment of Confucian culture in China, is an idea and a processing mode about modern maths.
下面列出了现代数学的领域,并简要说明其范围和联系的其他部分百科全书,阐述系统的方式。
Here is a list of areas of modern mathematics, with a brief explanation of their scope and links to other parts of this encyclopedia, set out in a systematic way.
代数表示论是上世纪七十年代初兴起的代数学的一个新的分支,它的基本内容是研究环与代数的结构。
Algebra representation theory is a new algebraic branch arising in 1970s whose researches mainly focuses on rings and algebraic structures.
经济学家们仍旧对共同使用希腊数字保有兴趣,对他们所解释的形为他们喜欢提供正式的代数学的报告。
Economists still share a taste for the Greek alphabet: they like to provide formal, algebraic accounts of the behaviour they explain.
一旦证明猜想是伪命题,那将使人们对现代数学的许多部分产生质疑——当然也包括基于庞加莱猜想的一切。
Proving the conjecture false would have cast doubt on much of modern mathematics-and everything that depends on it.
“当我们思考古代数学的时候,我首先想到的是毕达哥拉斯和欧几里德,”她说,但“这不应该是这样。”
"When we think of ancient mathematics, the first names that come to mind are Pythagoras and Euclid," she said, but that "this shouldn't be the case."
半群的研究在代数学的理论研究中占有很重要的地位。 其中格林关系在半群理论的研究中有着重要的意义。
The research of semigroup plays an important role in the research of the theory of algebra, and the Green's equivalences are especially significant in the study of semigroups.
离散数学是近几十年来产生的一门新课程,它是现代数学的一个重要分支,是计算机科学中专业基础理论的核心课程。
Discrete mathematics is a summary of recent decades, generated a new course, it is an important modern branch of mathematics, computer science professionals in the basic theory of the core curriculum.
在教学过程中特别强调结合具体的例子来理解代数学的数学思想和思维方法,注意介绍最新的科研成果以开阔同学的视野。
In the course we introduce the core concepts and ideals through a detailed study of some important examples. We also introduce some recent progress on algebraic researches.
代数型是数学中重要的基本概念,代数不变量是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具。
The conventional studies of algebraic invariants and geometrical properties are that these invariants are derived for planar objects using points, lines from one single image.
代数型是数学中重要的基本概念,代数不变量是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具。
The conventional studies of algebraic invariants and geometrical properties are that these invariants are derived for planar objects using points, lines from one single image.
应用推荐