给出了布尔群代数半群中的幂等元、极大子群和正则元的结构以及幂等元和正则元的个数。
The structure of the idempotent elements, regular elements and maximal subgroups and the number of the idempotent elements and regular elements in Boolean group algebra are given.
本文通过对合交换半群概念的引入,对MV-代数建立了几组等价公理系,对原有的公理系进行了较好的简化。
In this paper, we introduce the notion of involution commutative semi-group, and give some equivalence axioms of MV - algebras.
半群的研究在代数学的理论研究中占有很重要的地位。 其中格林关系在半群理论的研究中有着重要的意义。
The research of semigroup plays an important role in the research of the theory of algebra, and the Green's equivalences are especially significant in the study of semigroups.
半群平移壳理论是半群代数理论的一个重要部分,在半群的理想扩张理论中占有重要地位。
The theory of translational hull of semigroups is an important branch of the algebra theory and plays a basic role in the theory of ideal extensions of semigroups.
本文给出了建立在含幺半群基础上的范畴语法的代数结构 ,定义了范畴方程和它的解并对范畴方程的解作了分类 :相容性的相关性。
In this article, we showed the algebraic structure of syntactic categories based on monoid and defined categorial equation whose solutions are described by consistency and correlation .
本文给出了建立在含幺半群基础上的范畴语法的代数结构 ,定义了范畴方程和它的解并对范畴方程的解作了分类 :相容性的相关性。
In this article, we showed the algebraic structure of syntactic categories based on monoid and defined categorial equation whose solutions are described by consistency and correlation .
应用推荐