一阶谓词逻辑是现代逻辑中最为经典的演算系统。
Predicate logic of first order is the most classical calculation system in modern logic.
描述逻辑是一阶谓词逻辑的可判定子集,具备强大的知识表示和推理功能。
Description Logics (DLs) is a decidable subset of first-order predication logic which possesses powerful function of knowledge expressing and reasoning.
提出了两种用于一阶谓词逻辑推理的图形方法:目标制导的图形推理法和变迁框图形推理法。
Two graphical methods used in first-order predicate logical reasoning, that is goal-guiding graphical reasoning method and transition frame graphical reasoning method, are presented.
讨论了三种时间逻辑方法:一阶谓词演算,模态逻辑及具体化逻辑。
Three temporal logics i. e. first-order predicate calculus, modal logic and reified logic are discussed.
之后,美籍逻辑学家歌德尔一阶谓词演算的完备性定理,这标志着现代逻辑基础部分的完成。
After this, American Logician Kurt Godel proved the completeness theory of predicate calculus. This means the completion of the base of Modern Logic.
在本知识库系统模型中,知识表示采用一阶谓词(SDSS)逻辑和案例两者相结合的方式。
In this knowledge base system model, we adopt both first order predicate logic (FOPL) and case knowledge representation modes to represent the knowledge.
本文提出了一种从正负例和背景知识学习含有约束原子的一阶谓词公式的归纳逻辑程序设计方法。
In the field of Machine Learning, this thesis is presents new method to learn constraint atoms from positive and negative examples in first-order predicate, based on developed ILP system.
本文提出了一种从正负例和背景知识学习含有约束原子的一阶谓词公式的归纳逻辑程序设计方法。
In the field of Machine Learning, this thesis is presents new method to learn constraint atoms from positive and negative examples in first-order predicate, based on developed ILP system.
应用推荐