含时窗限制之车辆途程问题(VRPTW)相对于车辆途程问题(VRP),必须额外考虑到运送时间与时间窗口,其主要的原因来自顾客有服务时间的最后期限和最早开始服务时间的限制。故在此限制条件之下,原本VRP问题除了空间方面的路径(Routing)考虑之外,还必须要加上时间上的排程(Scheduling)考虑。同时由于场站也有时间窗的限制,也间接造成路径长度的限制,由此可知VRPTW的总巡行成本不仅包含运送成本,还需要考虑时间成本,以及未在时间窗限制内送达的处罚成本。因此,若要得到一个好的解答,时间和空间(Temporal andSpatial)问题的探讨是非常重要的。
由于VRPTW比VRP问题多考虑了一样时窗的因素,因此在解法上较VRP问题更为复杂,而根据Taillard(1997)等人的分类,求解VRPTW的方法可以分为六种,分述如下。
以分枝界限法求算之精确解法
以分枝界限法求算之精确解法(Exact Algorithm Based on Branch-and-BoundTechniques):Kolen(1987)利用这种方式可以求得精确解,但是只能解决六至十五个节点的问题,因此求解的范围过小,仅适用于小型问题。
途程建构启发式算法
途程建构启发式算法(Route Construction Heuristics):在一问题中,以某节点选择原则或是路线安排原则,将需求点一一纳入途程路线的解法。如Soloman(1987)的循序建构法(Sequential Insertion Heuristics)。
途程改善启发式算法
途程改善启发式算法(Route Improvement Heuristics):先决定一个可行途程,也就是一个起始解,之后对这个起始解一直做改善,直到不能改善为止。而常见的是节线交换法(Edge Exchange Procedure),如Lin(1965)所提出的K-Optimal,以及Potvin与Rousseau(1993)提出一考虑旅行方向的交换算法。
合成启发式算法
合成启发式算法(Composite Heuristics):此种解法混合了途程建构启发式算法与途程改善启发式算法,如Russell(1995)所提出的Hybrid Heuristics便是混合了Potvin与Rousseau(1993)所提出的平行插入法,并在之中加入路线改善法的合成启发式算法;Roberto(2000)也提出的属于平行插入法与内部交换改善法的合成启发式解法来求解VRPTW的问题。
依据最佳化之启发式算法
依据最佳化之启发式算法(Optimization-Based Heuristics):如Koskosidis(1992)等人利用混合整数规划模块,再透过启发式算法,将原始问题分解成指派/分群的子问题的一系列的巡行以及排程问题。
通用启发式算法
通用启发式算法(Metaheuristics):传统区域搜寻方法的最佳解常因起始解的特性或搜寻方法的限制,而只能获得局部最佳解,为了改善此一缺点,近年来在此领域有重大发展,是新一代的启发式解法,包含禁忌法(Tabu Search)、模拟退火法(Simulated Annealing)、遗传算法(Genetic Algorithm)和门坎接受法(Threshold Accepting)等,可以有效解决局部最佳化的困扰。如Potvin(1996)等人、Taillard(1997)等人均利用Tabu Search的方式来求解VRPTW的问题。