光合碳循环 百科内容来自于: 百度百科

光合作用

光合碳循环,是一种类似于三羧酸循环(又称为克雷布斯循环,Krebs cycle,或称柠檬酸循环)的新陈代谢过程,是光合作用暗反应的一部分,反应场所为叶绿体内的基质,可使碳以二氧化碳的形态进入发生羧化、还原和二磷酸核酮糖再生共三个阶段的循环后,最终以糖的形态离开该循环。整个循环是利用ATP作为能量来源,并以降低能阶的方式来消耗NADPH,如此可增加高能电子来制造糖。

循环阐明

M.卡尔文及其同事A.A.本森等从1946年开始,应用新问世的14C标记的14CO2示踪,并结合纸层析技术,研究了小球藻栅藻等进行光合作用时碳同化的最初产物,从双相纸层析放射自显影的图谱中看到从14CO2形成了20余种带14C标记的化合物。将照光时间渐次缩短至秒级,外推至零时,判断其中最早出现的是磷酸甘油酸(PGA)。从14C在各同化分子中不同原子间分布的顺序,推断出C3,C4,C5,C6,C7,糖磷酸酯之间的关系以及它们从PGA形成的先后顺序。根据①植物从光转暗时核酮糖-1,5-二磷酸(RuBP)水平急剧下降,PGA迅速上升,②骤然降低CO2浓度时,PGA迅速下降,RuBP、核酮糖-5-P(Ru5P)、甘油醛-3-P(GAP)依次上升,断定RuBP是PGA的前体。③找到了催化RuBP与NaH14CO3形成PGA的RuBP羧化酶,肯定RuBP是CO2的受体。CO2同化需要光化学反应形成的ATP及NADPH。整个循环的阐明共花费了9年左右的时间。卡尔文为此获得了 1961年度的诺贝尔化学奖。1955年E.拉克用菠菜叶片无细胞酶制剂,添加甘油醛-3-脱氢酶,R5P,NAD等,在溶液中用CO2与H2合成了碳水化合物果糖-6-磷酸。

步骤划分

光合碳循环中的十几个步骤可分为3个部分:
①羧化作用:由RuBP羧化酶催化,将CO2加到RuBP的C-2上,形成中间产物2-羧基-3-酮基核糖醇-1,5-二磷酸,然后水解为两个分子的3-PGA;
②还原作用:两个3-PGA经 PGA激酶作用,消耗两个 ATP,形成两个1,3-DPGA,再经GAP脱氢酶催化,消耗两个NADPH,还原为两个GAP;
③CO2受体RuBP的再生;每 3个RuBP与3个CO2形成6个GAP,5个GAP经过一系列的异构化、缩合与重组,消耗3个ATP,再合成3个RuBP,净生产一个GAP。
GAP是合成各种有机物质的碳架,可在叶绿体中合成淀粉等物质,又可透过叶绿体被膜上的起跨膜传递作用的蛋白称为P1-运转器输出叶绿体外,合成蔗糖等物质。 特有的酶氧化戊糖磷酸途径酶系统的发现促进了光合碳循环各步骤酶系统的分离。其中核酮糖-1,5-二磷酸羧化酶、核酮糖-5-磷酸激酶、景天糖-1,7-二磷酸酯酶是此循环 特有的酶。循环中的RuBP羧化酶、GAP脱氢酶、FBP酯酶、SBP酯酶、Ru5P激酶是调节酶。除一般的代谢调节外,光也起重要的调节作用。光合电子传递产生的还原剂使GAP脱氢酶、FBP酯酶、SBP酯酶、Ru5P激酶活化。叶绿体照光时类囊体膜吸收间质中的H +引起间质pH值的上升,从pH7.1升至pH8.1;同时类囊体的Mg 2+外流,增加了间质中Mg 2+的浓度,为RuBP羧化酶、FBP酯酶、SBP酯酶、Ru5P激酶催化的反应创造了最适的环境条件。

酶的催化

此循环的第一步羧化反应是RuBP羧化酶催化的,它是植物中主要的可溶性叶蛋白,也是自然界中数量最多的一种酶蛋白。它具有双重功能,既能催化RuBP与二氧化碳形成PGA的反应,又能催化RuBP氧化裂解形成PGA及磷酸乙醇酸(它是光呼吸底物的主要来源)的加氧反应。因此RuBP羧化酶又称为RuBP羧化酶-加氧酶,它的分子量为 1~5.5×105。随着植物的进化,此酶的分子量也逐渐增大。在高等植物中此酶含有8个大亚单位和8个小亚单位。酶的催化部位处于大亚单位上,小亚单位可能起调节作用。大亚单位受叶绿体DNA控制,在叶绿体核糖体上合成;小亚单位受细胞核DNA控制,在细胞质核糖体上合成。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定