As an important unsupervised pattern recognition tool clustering analysis has been used in diverse fields such as data mining, biology, computer vision, document analysis.
聚类分析作为一种重要的非监督模式识别工具,可用于多种领域,如数据挖掘、生物学、计算机视觉、文档分析等。
Researched the unsupervised anomaly detection methods based on clustering analysis, improved the K-means algorithm.
研究了基于聚类分析的非监督式异常检测方法,并改进了K均值算法用于聚类分析。
Clustering analysis is important part of data mining. It is an unsupervised learning process and it doesn't need prior knowledge about data set.
聚类分析是数据挖掘重要的组成部分,它是一种无监督的学习方法,不需要关于数据集的先验知识。
应用推荐