Multi-naive Bayes algorithm 多重朴素贝叶斯算法
Naive Bayes algorithm is an effective simple classification algorithm. Since its conditional independence assumption is not always true in real life,its classification performance is affected to some extent.
朴素贝叶斯算法是一种简单而高效的分类算法,但其条件独立性假设并不符合客观实际,这在某种程度上影响了它的分类性能。
参考来源 - 基于Rough Set的加权朴素贝叶斯分类算法 in C·2,447,543篇论文数据,部分数据来源于NoteExpress
Most of the content-based filtering algorithms are based on vector space model, of which Naive Bayes algorithm and K-Nearest Neighbor (KNN) algorithm are widely used.
基于内容的过滤算法大多数是基于向量空间模型的算法,其中广泛使用的是朴素贝叶斯算法和K最近邻(KNN)算法。
Naive Bayes algorithm is a simple and effective classification algorithm. However, its classification performance is affected by its conditional attribute independence assumption.
朴素贝叶斯算法是一种简单而高效的分类算法,但是它的条件独立性假设影响了其分类性能。
This paper USES the improved K-means (IKM) algorithm to process the missing data and thus improve the precision of the Naive Bayes classifier.
本文利用改进的K -均值算法对缺失数据进行处理,提高了朴素贝叶斯分类的精确度。
应用推荐