Jacobian matrix and determinant
- 雅可比矩阵(在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵)
Jacobian matrix and determinant
-
abstract:
In vector calculus, the Jacobian matrix (, ) is the matrix of all first-order partial derivatives of a vector-valued function. Specifically, suppose F : \mathbb{R}^n \rightarrow \mathbb{R}^m is a function (which takes as input real n-tuples and produces as output real m-tuples).
以上来源于:
WordNet