The current mathematic theory and calculation practices indicate that the time needed to process language information increases with the complexity of the input information exponentially.
目前的数学理论和计算实践显示,自然语言处理所需要的时间随输入信息的复杂度呈指数增长。
Time complexity of this decomposition algorithm is far less than the classical reduction method in RST, speed of calculation is raised and information are not loss.
该分解算法的计算时间复杂度远小于经典粗糙集约简算法的计算时间复杂度,在提高计算速度的同时不会损失信息量。
The fluctuations are calculated with the assumption of unlimited resources, where the calculation is incorporated into the calculation of the average loads without adding to the time complexity.
负载的涨落是在无限处理能力的假设下计算的。算法在平均负载的计算上进行扩展,但避免了时间复杂度的增加。
应用推荐