Techniques such as Bayesian networks or neural networks use highly expressive models, which try to produce a non-biased classifier in order to "describe" a corpus of documents.
Bayesian网络或神经网络等技术使用表达能力非常强的模型,力求生成无偏向的分类器来“描述”文档集。
A mix model with the subspace classifier and BP neural network classifier was realized, which is used in handwritten English letter and number recognition.
最后,用子空间分类器和BP神经网络分类器构造了一个混联模型,用于手写英文字母和数字的识别。
This paper presents a multiclass neural network classifier to learn disjunctive fuzzy information in the feature space.
本篇论文提出一个类神经网路分类器来学习多类的分离模糊资讯。
应用推荐