把四次有理插值样条函数的连续性降为C2连续就可以提供额外的自由度,这对于控制曲线的形状具有较大的灵活性。
If we decrease the splines continuity to C2 continuous, it can provide additional freedom degree, and this is very useful for shape constraint in curve design.
给出了具有线性分母的有理三次样条函数的误差估计,并在柱面坐标系下对一类空间闭曲线的插值问题进行了研究;
The error estimation of rational cubic spline with linear denominators is given, and then the interpolation of a kind of space closed curves under cylindrical coordinate system is investigated.
给出一种简单的有理分式插值——差分样条插值。
In this paper we give a simple interpolation of rational function-difference spline interpolation.
应用推荐