多分辨率小波网络 MRNN
·2,447,543篇论文数据,部分数据来源于NoteExpress
文章提出一种基于多分辨率学习的正交基小波神经网络结构的设计方法,网络权值的学习采用阻尼递推最小二乘算法。
A designing method of wavelet neural network structure based on multiresolution learning is put forward, and the studies of network weights adopt damped least squares.
在数字图像小波多分辨率分析理论基础上,采用小波变换方法对高分辨遥感图像的目标地物边缘进行信息增强,然后与多光谱遥感图像进行特征信息融合。
After the wavelet's multi-resolution analysis, a feature fusion approach was adopted to enhance remote sensing image edge and improve the definition and resolving power of the image.
小波变换具有多分辨率和多尺度特性,特别适合于二维图像信号的处理,目前已应用在静止图像的压缩标准中。
While wavelet transform is suitable in image compression due to its multi-resolution and multi-scale analysis property, and is used in the standards of image compression.
应用推荐