啮合刚度是齿轮啮合时轮齿抵抗变形的能力。在齿轮刚度(弹性)范围内,啮合刚度是齿轮所受载荷与位移成正比的比例系数,即引起单位位移所需的力。
Dynamic model of two-stage gear system with time-varying mesh stiffness was established. Approximate analytic solution of the system was developed by means of A-operator method (AOM).
建立了考虑齿轮时变啮合刚度时的二级齿轮系统的动力学模型,用A算符方法推导出了系统的近似解析解,研究了系统对时变啮合刚度、扭矩波动及齿轮误差激励的响应。
参考来源 - 期刊学术社区These factors cause the tooth stiffness vary. The time-varying meshing stiffness plays an important role in dynamic characteristic of system.
运用有限元弹性接触分析方法,建立了一对渐开线直齿圆柱齿轮啮合的弹性接触有限元模型,计算了齿轮副时变啮合刚度。
参考来源 - 齿轮副非线性动力学模型的建立与分析It can contrast with the result in theory method. And carries on the analysis to the meshing rigidity, proposes the improvement program of proto type.
并对求解的啮合刚度进行分析,提出对样机的改进方案。
参考来源 - 环板式针摆行星传动动态特性分析·2,447,543篇论文数据,部分数据来源于NoteExpress
建立了具有时变啮合刚度的二级齿轮系统的动力学方程式。
The governing equation of a gear system with time-varying meshing stiffness is established.
用算符分解算法(AOM)研究了扭矩波动和时变啮合刚度对拍击门槛转速的影响。
A-operator method (AOM) is used to study the influence of the torque fluctuation and time-varying meshing stiffness on rattling threshold speed of the gear system.
由于齿轮副啮合刚度的影响,动力学方程序代表了一个具有时变系数的线性动力系统。
Because of the meshing stiffness of a gear pair, the governing equation denotes a linear dynamic system with periodic time-varying coefficient.
应用推荐