辉光放电 百科内容来自于: 百度百科

辉光放电(glow discharge)是指低压气体中显示辉光的气体放电现象,即是稀薄气体中的自持放电(自激导电)现象。由法拉第第一个发现。它包括亚正常辉光和反常辉光两个过渡阶段。辉光放电主要应用于氖稳压管、氦氖激光器等器件的制造。

物理原理

低压气体中显示辉光气体放电(空气中的电子大概在1000对/cm,由于高压放电现象在低气压状态下会产生辉光现象)现象,即是稀薄气体中的自持放电(自激导电)现象。自持放电所属现代词,指的是不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。在置有板状电极玻璃管内充入低压(约几毫米汞柱)气体蒸气,当两极间电压较高(约1000伏)时,稀薄气体中的残余正离子在电场中加速,有足够的动能轰击阴极,产生二次电子,经簇射过程产生更多的带电粒子,使气体导电辉光放电的特征是电流强度较小(约几毫安),温度不高,故电管内有特殊的亮区和暗区,呈现瑰丽的发光现象。

放电阶段

辉光放电有亚正常辉光和反常辉光两个过渡阶段,放电的整个通道由不同亮度区间组成,即由阴极表面开始,依次为:①阿斯通暗区;②阴极光层;③阴极暗区(克鲁克斯暗区);④负辉光区;⑤法拉第暗区;⑥正柱区;⑦阳极暗区;⑧阳极光层。其中以负辉光区、法拉第暗区和正柱区为主体。这些光区是空间电离过程及电荷分布所造成的结果,与气体类别、气体压力、电极材料等因素有关,这些都可以从放电理论上作出解释。辉光放电时,在两个电极附近聚集了较多的异号空间电荷,因而形成明显的电位降落,分别称为阴极压降和阳极压降。阴极压降又是电极间电位降落的主要成分,在正常辉光放电时,两极间的电压不随电流变化,即具有稳压的特性。
辉光放电时,在放电管两极电场的作用下,电子和正离子分别向阳极阴极运动,并堆积在两极附近形成空间电荷区。因正离子的漂移速度远小于电子,故正离子空间电荷区电荷密度比电子空间电荷区大得多,使得整个极间电压几乎全部集中在阴极附近的狭窄区域内。这是辉光放电的显著特征,而且在正常辉光放电时,两极间电压不随电流变化。
阴极附近,二次电子发射产生的电子在较短距离内尚未得到足够的能使气体分子电离或激发的动能,所以紧接阴极的区域不发光。而在阴极辉区,电子已获得足够的能量碰撞气体分子,使之电离或激发发光。其余暗区和辉区的形成也主要取决于电子到达该区的动能以及气体的压强(电子与气体分子的非弹性碰撞会失去动能)。

发展历史

1831~1835年,M.法拉第在研究低气压放电时发现辉光放电现象和法拉第暗区。1858年,J.普吕克尔在1/100托下研究辉光放电时发现了阴极射线,成为19世纪末粒子辐射和原子物理研究的先驱。

应用领域

辉光放电的主要应用是利用其发光效应(如霓虹灯、日光灯)以及正常辉光放电的稳压效应(如氖稳压管)。 利用辉光放电的正柱区产生激光的特性,制做氦氖激光器。
低压气体放电的一种类型,在发射光谱分析中用作气体分析和难激发元素分析的激发光源。在玻璃管两端各接一平板电极,充入惰性气体,加数百伏直流电压,管内便产生辉光放电,其电流为10-4~10-2A。放电形式与气体性质、压力、放电管尺寸、电极材料、形状和距离有关。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定