相关系数 百科内容来自于: 百度百科

相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。于是,著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。

定义

相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。
相关系数公式 相关系数公式
简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。

性质

(1)定理: | ρ XY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1;
相关系数ρ XY取值在-1到1之间,ρ XY = 0时,
称X,Y不相关; | ρ XY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系; | ρ XY | < 1时,X的变动引起Y的部分变动,ρ XY的绝对值越大,X的变动引起Y的变动就越大, | ρ XY | > 0.8时称为高度相关,当 | ρ XY | < 0.3时称为低度相关,其它时候为中度相关。
(2)推论:若Y=a+bX,则有
证明: 令 E( X) = μ, D( X) = σ 2
E( Y) = bμ + aD( Y) = b2σ 2
E( X Y) = E( a X + bX2) = aμ + b2 + μ 2)
C o v( X, Y) = E( X Y) − E( X) E( Y) = bσ 2
若b≠0,则ρ XY ≠ 0。
若b=0,则ρ XY = 0。
软件公司在全国有许多代理商,为研究它的财务软件产品的广告投入与销售额的关系,统计人员随机选择10家代理商进行观察,搜集到年广告投入费和月平均销售额的数据,并编制成相关表,见表1:
表1 广告费与月平均销售额相关表 单位:万元
年广告费投入
月均销售额
12.5
  15.3
  23.2
  26.4
  33.5
  34.4
  39.4
  45.2
  55.4
  60.9
21.2
  23.9
  32.9
  34.1
  42.5
  43.2
  49.0
  52.8
  59.4
  63.5
参照表1,可计算相关系数如表2:
序号
广告投入(万元)
  x
月均销售额(万元)
  y
1
  2
  3
  4
  5
  6
  7
  8
  9
  10
12.5
  15.3
  23.2
  26.4
  33.5
  34.4
  39.4
  45.2
  55.4
  60.9
21.2
  23.9
  32.9
  34.1
  42.5
  43.2
  49.0
  52.8
  59.4
  63.5
156.25
  234.09
  538.24
  696.96
  1122.25
  1183.36
  1552.36
  2043.04
  3069.16
  3708.81
449.44
  571.21
  1082.41
  1162.81
  1806.25
  1866.24
  2401.00
  2787.84
  3528.36
  4032.25
265.00
  365.67
  763.28
  900.24
  1423.75
  1486.08
  1930.60
  2386.56
  3290.76
  3867.15
合计
346.2
422.5
14304.52
19687.81
16679.09
  • =0.9942
相关系数为0.9942,说明广告投入费与月平均销售额之间有高度的线性正相关关系。

应用

例1.若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρ XY
解:由于X+Y=n,则Y=-X+n,根据相关系数的性质推论,得ρ XY = − 1。
例2.已知随机变量X、Y分别服从正态分布N(1,9),N(0,16)且X,Y的相关系数
设,求证X,Z相互独立。
证明:由已知得E(X)=1,D(X)=9,E(Y)= 0, D( Y) = 16
由于正态分布的随机变量的线性组合仍然服从正态分布,知Z是正态变量。
根据数学期望的性质有
根据方差的性质有得
由于 E( X Y) = C o v( X, Y) + E( X) E( Y) = − 6,
E( X) = D( X) + [ E( X)] = 10
ρ XZ = 0,X,Z不相关。
由于正态随机变量的相互独立与互不相关等价,故X,Z相互独立。
因此,一般情况下两个随机变量不相关不一定相互独立。不相关仅指随机变量之间没有线性关系,而相互独立则表明随机变量之间互不影响,没有关系。
【例】一种新产品上市。在上市之前,公司的物流部需把新产品合理分配到全国的10个仓库,新品上市一个月后,要评估实际分配方案与之前考虑的其他分配方案中,是实际分配方案好还是其中尚未使用的分配方案更好,通过这样的评估,可以在下一次的新产品上市使用更准确的产品分配方案,以避免由于分配而产生的积压和断货。表1是根据实际数据所列的数表。
通过计算,很容易得出这3个分配方案中,B的相关系数是最大的,这样就评估到B的分配方案比实际分配方案A更好,在下一次的新产品上市分配计划中,就可以考虑用B这种分配方法来计算实际分配方案。
【例】如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品间的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用 A 1, A 2,..., A 9表示)的6个性状资料见表2,作相关系数计算并检验。
由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 0.8982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。

缺点

需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
例如,就我国深沪两股市资产负债率与每股收益之间的相关关系做研究。发现1999年资产负债率前40名的上市公司,二者的相关系数为r=–0.6139;资产负债率后20名的上市公司,二者的相关系数r=0.1072;而对于沪、深全部上市公司(基金除外)结果却是,r沪=–0.5509,r深=–0.4361,根据三级划分方法,两变量为显著性相关。这也说明仅凭r的计算值大小判断相关程度有一定的缺陷。

参考文献

  1. ↑ 郭红霞.相关系数及其应用.武警工程学院学报.2010年3月,第26卷第2期
  2. 王爱莲.统计学.第七章 相关与回归分析.第一节 相关分析.西安石油大学.经济管理学院
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定