液体火箭发动机 百科内容来自于: 百度百科

液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。

组成部分

液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。

推力室

推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约20MPa)、温度3000~4000℃,故需要冷却。

供应系统

推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。

控制系统

发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。
液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。
液体火箭发动机是采用液体推进剂的火箭发动机的简称。液体推进剂由输送系统送到发动机泵前,经泵加压后进行发动机推力室的燃烧室进行燃烧或分解,将推进剂的公演能变为热能,产生高温高压燃气,通过推力室喷管膨胀,将热能变为动能,以高速方式从喷管内向外喷出,产生反作用力——推力,为火箭飞行提供所需的动力。
液体火箭发动机的工作过程一般包括启动、额定工作和关机。启动过程是火箭发动机接到启动指令,打开启动阀门至发动机推力达到额定工作状态的过程;额定工作过程是发动机性能参数处于设计参数工作状态;关机过程是发动机接到关机指令后,切断副系统和主系统的推进剂供应,推力迅速下降到零的过程。
液体火箭发动机主要由推力室、涡轮泵、燃气发生器、火药启动器和各种阀门、调节器、管路等组成。推进剂在推力室内的燃烧过程和膨胀过程非常复杂,因此对推力室内工作过程的分析非常困难。另外,在推力室的研制过程中必须解决燃烧的不稳定性问题。拉瓦尔式喷管是推力室的重要组成部分,喷管内型面的设计要在尽可能小的尺寸和结构重量下,使喷管内高温、高压燃气的流动过程接近于理想过程,能量损失最少而效率高。因此,对喷管构型的研究、流场性能的分析以及结构设计上的创新是推力室设计研制的重要课题。
涡轮泵是由气体涡轮、燃料泵和氧化齐泵等组成,其功用是由涡轮带动泵,将来自贮箱的推进剂的压力由几百千帕提高到几万千帕。然后再送入发动机推力室。涡轮泵结构复杂、工作条件苛刻、压头高,因此,设计效率高的涡轮泵也是发动机研制中的关键。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定