百科内容来自于: 百度百科

氘为氢的一种稳定形态同位素,也被称为重氢,元素符号一般为D或2H。它的原子核由一颗质子和一颗中子组成。在大自然的含量约为一般氢的7000分之一,用于热核反应。被称为“未来的天然燃料”。

基本信息

【文字】氘;
“氘”在米字格中的写法(图1)

“氘”在米字格中的写法(图1)

【拼音】dāo;
【注音】ㄉㄠ;
【部首】气;
【部外笔画】2;
【总笔画】6;
【五笔86】RNJJ;
【五笔98】RJK;
【仓颉】ONLL;
【笔顺编号】311532;
【四角号码】80217;
【UniCode】CJK 统一汉字 U+6C18
中子图

中子图

质子图

质子图

电子图

电子图

汉字释义

基本释义

氘(名称):氢的同位素之一,用于热核反应。旧称“重(z
字源演变(图2)

字源演变(图2)

hòng)氢”,常温下为无色无臭的气体。

详细解释

氘(化学术语):(H)的同位素,其相对原子质量为普通轻氢的二倍,少量的存在于天然水中,用于核反应,并在化学生物学的研究工作中作示踪原子(deuterium)——亦称“重氢”,元素符号D或H2。

方言集汇

粤语:dou1;
字形对比(图3)

字形对比(图3)

客家话:【客语拼音字汇】dau1 do1;
潮州话:dao1 (tau)。

元素性质

主要用途

氘的化合物

氘的化合物

特种灯泡、核研究、氘核加速器的轰击粒子、示踪剂

常用制法

(1)由重水电解。
(2)由液氢低温精镏。

理化性质

三相点】-254.4℃;
【液体密度】(平衡状态,-252.8℃):0.169g/cm3;
比热容】(101.325kPa,21.2℃】:5.987m3/kg
【气液容积比】(15℃,100kPa):974L/L;
压缩系数】:
压强(kPa)
100
1000
5000
10000;
温度(℃)
15
50
1.0087
1.0008
1.0060
1.0057
1.0296
1.0296
1.0600
1.0555;
【临界温度】:-234.8℃;
临界压强】1664.8kPa;
临界密度】66.8g/cm3;
【溶化热】(-254.5℃)(平衡态):48.84kJ/kg;
【气化热】 ΔHv(-249.5℃):305kJ/kg;
【比热容】(101.335kPa,25℃,气体):Cp=7.243kJ/(kg·℃),Cv=5.178kJ/(kg·℃);
比热比】(101.325kPa,25℃,气体):Cp/Cv=1.40;
【蒸气压强
(正常态,17.703):10.67kPa;
(正常态,21.621):53.33kPa;
(正常态,24.249K): 119.99kPa;
粘度
(气体,正常态,101.325kPa,0℃):0.010lmPa·S;
(液体,平衡态,-252.8℃):0.040mPa·s;
表面张力】(平衡态,-252.8℃):3.72mN/m;
导热系数
(气体101.325kPa,0℃):0.1289w/(m·K);
(液体,-252.8℃):1264W/(m·K);
【折射系数】nv(101.325kPa,25℃):1.0001265;
【空气中的燃烧界限】5%~75%(体积);
【易燃性级别】4;
【毒性级别】0;
【易爆性级别】1;重氢在常温常压下为无色无嗅无毒可燃性气体,是普通氢的一种稳定同位素。它在通常水的氢中含0.0139%~0.0157%。其化学性质与普通氢完全相同,但因质量大,反应速度小一些。

安全防护

氘无毒,有窒息性。重氢有易燃易爆性,所以对此须引起足够的重视。瓶装气体产品为高压充装气体,使用时应经减压降压后方可使用。包装的气瓶上均有使用的年限,凡到期的气瓶必须送往有部门进行安全检验,方能继续使用。每瓶气体在使用到尾气时,应保留瓶内余压在0.5MPa,最小不得低于0.25MPa余压,应将瓶阀关闭,以保证气体质量和使用安全。瓶装气体产品在运输储存、使用时都应分类堆放,严禁可燃气体与助燃气体堆放在一起,不准靠近明火和热源,应做到勿近火、勿沾油腊、勿爆晒、勿重抛、勿撞击,严禁在气瓶身上进行引弧或电弧,严禁野蛮装卸。

发现历史

1931年底,美国科学家哈罗德·克莱顿·尤里(Harold Clayton Urey)在蒸发了大量液体氢之后,利用光谱检测的方法发现了重氢(氘,D)。尤里因此在1934年获得诺贝尔化学奖
根据尤里的建议,重氢被命名为“Deuterium”,在希腊语中是“第二”的意思。

反氘介绍

氘的对应反物质是反氘,其原子核拥有一颗反质子反中子,反氘核於1965年最先由欧洲核子研究委员会(CERN)及美国布克海文国家实验室制成,但至今仍未曾成功造到一颗拥有正电子的完整反氘原子。

发现者

同位素这个名词的西文isotope是英国人索迪(F. Soddy,1877-1956)于1911年开始使用的。后来,另一位英国人阿斯顿(F. W. Aston,1877-1945)在1919年制成了质谱仪,可以用来分离不同质量的粒子,并且测定它们的质量。这就把研究同位素的方法提高了一大步。阿斯顿先后利用质谱仪发现了很多元素的同位素,他在71种元素之中,陆续找到了202种同位素之多,这为我们认识同位素,开始积累了大量资料。
最引人关注的是,氢有没有同位素的问题。为了寻找氢的同位素,人们前后用了十几年的时间,而没有得出肯定的结果。1931年初,有人从理论上推导,认为应该有质量数为2的氢同位素存在,并且估算出2H:1H=1:4500的比例。1931年年底,美国哥伦比亚大学的尤里教授和他的助手们,把四升液态氢三相点14°K下缓慢蒸发,最后只剩下几立方毫米液氢,然后用光谱分析。结果在氢原子光谱的谱线中,得到一些新谱线,它们的位置正好与预期的质量为2的氢谱线一致,从而发现了重氢。尤里对它定了一个专门名,称“deuterium”(中文译为“氘”,符号“D”)。后来英、美的科学家们又发现了质量为3的“tritium”(中文译为“”,符号“T”),是具有放射性的另一重要氢同位素。
氘的发现是科学界在二十世纪三十年代初的一件大事。尤里因此在1934年荣获了诺贝尔化学奖金。他的声誉从此飞跃,可是他并未停止不前,后来还继续完成了很多重要研究工作。现在最常见的是氧化氘(又名重水),它的主要特性:氧化氘最大密度的温度是11.22℃(普通水是4.08℃),熔点是3.82℃,沸点是101.42℃,这些特性与普通水都大不相同。重水易于用电解水而取得,所以电费低廉的北欧能大量生产。后来重水成为制造氢弹的重要材料之一。
以上简单地叙述了一下氘和重水,是想由此引起人们对这位化学家尤里的重视。他是去年一月六日才以八十六岁的高龄病故的。下面(此文发表于 1982年—编者注)扼要地介绍他的生平和业绩,表示我们对他的敬念。哈罗德·克莱顿·尤里(Harold Clayton Urey)于1893年4月29日生在美国西北部印第安纳州的一个农民家庭里。中学毕业之后,他先在一个农村的小学里教了三年书。后来才进了蒙大拿州立大学,他当时的主修课是生物学,以化学作为副系。可是他一生的主要成就,却由副系化学提供了基础。他毕业后得到了奖学金,从1921年到1923年在美国加州大学进修。成绩优异,三十岁时,取得了博士学位。1923年他又得了出国进修的奖学金,去丹麦跟波尔教授专门研究原子结构理论。尤里回国以后,先在约翰·霍普金斯大学担任讲师。1929年到哥伦比亚大学担任化学系副教授,他在这里和别人合作,写了一本专著,书名是《原子、分子和量子》(Atoms、Molecules and Quanta)。这是用英文写的关于量子力学的名著之一。这说明了尤里对于量子力学和热力学,以及核结构的成就,本来早已经达到相当高的水平了。在这期间,他用光谱法发现了惊人的氢同位素之一,氘。尤里从此以后,成为同位素化学方面公认的权威。经过他的研究,使同位素的分离开始有了化学方法。由于这种方法的成功,很多同位素才成为化学的、生物学的、地质学等方面的示踪物。在二次世界大战时,他利用同位素化学的丰富知识对最后战胜日本起了重大的作用。过去同位素的分离,只是在极小的范围内,用实验室的规模进行的。二次大战期间,尤里领导了一批助手,使重水分离和铀同位素的大规模分离,这一技术方面的成功,便使第一批原子弹的生产成为可能。战后,尤里接受了芝加哥大学的聘请,担任教授。在这里,他发表了一篇极重要的论文,这篇论文的题目是《同位素物质的热力学性质》。此后,尤里利用了高度精确的质谱仪,来检验地质和海洋中的氧同位素的百分比。由于这项技术的成功,他能相当准确地计算出七千万年前海洋的温度。
他在1952年发表了宇宙间元素丰度的数据,发展了元素起源和宇宙学理论。地的专著《行星:其起源和发展》(The Planets:Their Origin and Development)一书中,从化学过程来讨论太阳系演化的学说,指出行星是由围绕在原始太阳周围的尘埃聚集成的。地球的原始大气应当和现在的木星大气相似,主要由甲烷、氨和氢所组成。地球现在的大气是经几个长期阶段的变化形成的。1953年尤里和学生米勒(Stanley L.Miller)设计了一套仪器,模拟原始地球大气的成份和条件,在甲烷、氨、氢和水蒸气混合物中,连续进行了一星期的火花放电后,形成了十多种氨基酸。这说明了原始大气产生蛋白质的可能。这为研究生命起源问题开展了重要途径。1968年他六十五岁时,被加州大学聘为海洋研究所的高级研究员,他又提出了太阳系由陨石形成的理论,并认为在别的行星上也可能产生生命。尤里还是研究月球表面的专家。阿波罗登月取回月岩的样品,就是由尤里主持参加研究的。在海盗号火箭探索火星计划中,尤里又担任重要顾问。尤里在四十一岁时荣获诺贝尔化学奖外,他还先后得到各国政府、学术团体和科学组织授予的三十多种奖章和奖品,美国一些大学授给他十六个荣誉博士学位,其他国家的大学也曾授予他九个荣誉学位。这说明了世界上学术界对他的科学成就之重视。在尤里一生的最后十年中,他把很多精力放在反对原子武器的破坏作用上。他早就认为美国不可能独占核武器,他主张美国和苏联都应当减少原子武器,使世界长期和平可能达到。他在临终之前,还一再强调,原子能只能用于和平目的。他多年来所做的大量公开讲演讲和文字呼吁,曾经得到美国好些知识分子的同情,尽管有人不同意尤里的一些观点,但没有人怀疑,他的主张是真诚的和发自内心的。哈罗德.尤里的业绩将永垂于化学史上。

危害人体

如果把氘(或者说重水)说成是有毒物质是完全错误的。这就好像空气一样,空气中约4/5是氮气,这对生物是没有任何危害的。如果空气中氮气比例过高,人就会窒息而亡,但这并不说明氮气是有毒气体。同样道理,普通水中含有微量的重水,这对生命并没有影响,当重水含量很高时,人体会受到伤害,而这也并不说明氘是有毒物质。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定