强关联电子体系 百科内容来自于: 百度百科

凝聚态理论的长足进展已经搞清楚了许多材料的物性问题,但是还存在一些疑难问题悬而未决,其中最突出的莫过于强关联电子体系的问题。所谓电子关联,就是意味着电子和电子之间存在库仑相互作用,这一点也不稀奇,传统的能带理论在处理固体中的电子系统时,首先是忽略了电子之间相互作用,将电子系统视为相互独立的理想气体,考虑单电子与晶体的周期结构之间的相互作用,从而得到了固体的能带结构,然后再引入电子间的相互作用加以修正。

定义

强关联电子体系是指电子间的交互作用不可忽略的系统。在简单的固体理论中,固体中电子之间的静电相互作用被忽略了,不会出现在哈密顿算符里。故各个电子被看成是独立的,不会相互影响。然而,在许多物质中,静电能不能被忽略。当把这一部分能量写入哈密尔顿量,就得到强关联模型(或赫巴德模型(Hubbard model))。在强关联电子体系,由于电子之间的强相互作用,导致了许多新奇的物理现象。如高温超导体二维电子气中的分数量子霍尔效应、锰氧化物材料中的巨磁阻效应、重费米子系统、二维高迁移率材料中的金属-绝缘体相变、量子相变和量子临界现象、一维导体中的电荷密度波等等。

种类

1937年,科学家就发现NiO,MnO,CoO 等氧化物并不是能带理论所预言的金属,而是能隙很大的绝缘体。Mott 引进了关联能来解释这一物理问题,认为 d 电子间库仑相互作用抑制了极化涨落,产生了关联能隙,后来这一类绝缘体即被称为莫特绝缘体。Mott 进一步讨论了VO 2,V 2O 3等材料因温度或压力改变所引起的绝缘体到金属的相变,认定它们也是电子关联导致的相变,后来被称为 Mott 转变。莫特绝缘体几乎占了3 d 过渡金属二元氧化物中的一半,还包括很多的多元复杂氧化物和 4 f 稀土化合物及 5f 锕系化合物。
钙钛矿结构的锰氧化物是强关联电子体系的一个例子。这类材料的显示出庞磁电阻效应,以及电荷有序、轨道有序、超导序和磁有序.在LaCaMnO系的材料中,加上磁场后的电阻变化率可达到10 3~10 6。这种材料的铁磁性的根源是双交换相互作用,而且磁性转变与绝缘体-金属转变相邻近。
重费米子体系是强关联电子体系的另一个例子。在重费米子金属中,存在RKKY相互作用与Kondo相互作用的竞争。RKKY相互作用是局域磁矩之间通过极化的传导电子云而发生的间接交换相互作用。Kondo相互作用是局域磁矩与周围传导电子的直接交换相互作用。在低温下,两种相互作用竞争的结果,使重费米子金属有多种基态:磁有序态、超导态、费米液体态和非费米液体基态等。另一些过渡金属氧化物(如LiV 2O 5)同样具有典型的重费米子特性。
铜基以及铁基高温超导体同样是强关联电子体系。以BiSrCaCuO 为例,在掺杂浓度 x为零的材料是反铁磁序的绝缘体,随着掺杂的增加会发生绝缘体到金属的转变。而在低温就具有超导电性,随着掺杂的增加, T c 达到一峰值之后,又逐渐下降,高温超导体的正常态的电子性质都十分异常。
部分强关联电子体系显示出奇异的量子相变现象。量子相变是在接近绝对零度时, 量子系统随着外界参量的变化, 其基态从一种关联(有序)的状态到另一种关联状态的转变。零温下的量子相变点是物质基态相图中的一个奇异点,其重要意义在于控制着有限温度的大片量子涨落区域,表现出一系列完全不同于普通金属的热力学和动力学输运性质,即所谓的量子临界现象或非费密液体行为。量子临界现象为人们解释部分强关联电子体系低温下的奇异金属态或新物质态提供了一种新的微观图象。

发展

直到现在,各学科仍在这个领域进行合作研究,以了解这些材料的性质。要搞清楚复杂的强关联电子系统需要实验物理学家理论物理学家与材料学家的通力合作目。强关联电子材料必将在未来的物理学电子器件领域有更大发展与应用。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定