因数 百科内容来自于: 百度百科

假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因数。 需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称n为m的倍数。

数学名词

定义

在小学数学里,两个正整数相乘,那么这两个数都叫做的因数,或称为约数。
事实上因数一般定义在整数上:设a为整数,b为非零整数,若存在整数q,使得a=qb,则称b是a的因数,记作b|a。但是也有的作者不要求b≠0。

例子

2x6=12
2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数
3x(-9)=-27
3和-9都是-27的因数。-27是3和-9的倍数。
一般而言,整数a乘以整数b得到整数c,整数a与整数b都称做整数c的因数,反之,整数c为整数a的倍数,也为整数b的倍数。

列举因数

6的因数有:1和6,2和3。
9的因数有:1和9,3。
10的因数有:1和10,2和5。
15的因数有:1和15,3和5。
12的因数有:1和12,2和6,3和4。
25的因数有:1和25,5。
36的因数有:1和36,2和18,3和12,4和9,6。
注:此处 只列举正因数

公因数

定义:两个或多个整数公有的因数叫做它们的公因数
两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。
推论:1是任意个数的整数之公因数。
两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。

相关概念

  1. 整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
  2. 质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大於1的自然数中,除了1和此整数自身外,无法被其他自然数整除的数)
  3. 合数:除了1和它本身还有其它正因数。
  4. 1只有正因数1,所以它既不是质数也不是合数。
  5. 若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
  6. 公因数只有1的两个非零自然数,叫做互质数。
  7. 1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
  8. 所有不为零的整数都是0的因数。
  9. 2是最小的质数。
  10. 4是最小的合数。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定