催化剂 百科内容来自于: 百度百科

在化学反应里能改变反应物的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒)

基本定义

根据国际纯粹化学与应用化学联合会(IUPAC)1981年的定义:催化剂是一种改变反应速率但不改变反应总标准吉布斯自由能的物质。

催化剂

在化学反应中引起的作用叫催化作用。催化剂在工业上也称为触媒。
催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰氯酸钾受热分解中起催化作用,加快化学反应速率,但对其他的化学反应就不一定有催化作用。某些化学反应并非只有唯一的催化剂,例如氯酸钾受热分解中能起催化作用的还有氧化镁氧化铁氧化铜等等,氯酸钾制取氧气时还可用红砖粉或氧化铜等做催化剂。

一般定义

初中课本上定义:在化学反应里能改变(加快或减慢)其他物质的化学反应速率,而本身的质量和化学性质在反应前后(反应过程中会改变)都没有发生变化的物质叫做催化剂,又叫触媒。其物理性质可能会发生改变,例如二氧化锰(MnO 2)在催化氯酸钾(KClO 3)生成氯化钾(KCl)和氧气(O 2)的反应前后由块状变为粉末状。

其他定义

也有一种说法,催化剂参与化学反应。在一个总的化学反应中,催化剂的作用是降低该反应发生所需要的活化能,本质上是把一个比较难发生的反应变成了两个很容易发生的化学反应(与之相反的称为抑制剂)。在这两个反应中,第一个反应中催化剂扮演反应物的角色,第二个反应中催化剂扮演生成物的角色,所以说从总的反应方程式上来看,催化剂在反应前后没有变化。例如:
CFC破坏臭氧,其实就是它先于臭氧反应生成一个原子氧和一个复杂的化合物,然后另外一个臭氧分子和那个化合物反应生成一个原子氧和CFC,然后2个原子氧反应变成一个氧气分子。所以CFC在总反应前后没有变化,在总反应中,我们可以认为CFC充当催化剂使臭氧分子变成氧气分子,但其实CFC参与化学反应。
KClO3制氧气加入MnO2,可发生下列反应:
2KClO3+2MnO2==加热2KMnO4+Cl2↑+O2↑,2KMnO4==加热K2MnO4+MnO2+O2↑,K2MnO4+Cl2==加热2KCl+MnO2+O2↑
催化剂原先因发生化学反应而生成的物质会在之后进一步的反应中重新生成原有催化剂,即上面提到的质量和化学性质在反应前后都没有发生变化。
一般来说,催化剂是指参与化学反应中间历程的,又能选择性地改变化学反应速率,而其本身的数量和化学性质在反应前后基本保持不变的物质。通常把催化剂加速化学反应,使反应尽快达到化学平衡的作用叫做催化作用。

发现

催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,有个魔术“神杯”的故事。
贝采里乌斯

贝采里乌斯

有一天,瑞典化学家贝采里乌斯在化学实验室忙碌地进行着实验,傍晚,他的妻子玛利亚准备了酒菜宴请亲友,祝贺她的生日。贝采里乌斯沉浸在实验中,把这件事全忘了,直到玛丽亚把他从实验室拉出来,他才恍然大悟,匆忙地赶回家。一进屋,客人们纷纷举杯向他祝贺,他顾不上洗手就接过一杯蜜桃酒一饮而尽。当他自己斟满第二杯酒干杯时,却皱起眉头喊道:“玛利亚,你怎么把醋拿给我喝!”玛利亚和客人都愣住了。玛丽亚仔细瞧着那瓶子,还倒出一杯来品尝,一点儿都没错,确实是香醇的蜜桃酒啊!贝采里乌斯随手把自己倒的那杯酒递过去,玛丽亚喝了一口,几乎全吐了出来,也说:“甜酒怎么一下子变成醋酸啦?”客人们纷纷凑近来,观察着,猜测着这“神杯”发生的怪事。
贝采里乌斯发现,原来酒杯里有少量黑色粉末。他瞧瞧自己的手,发现手上沾满了在实验室研磨白金时给沾上的铂黑。他兴奋地把那杯酸酒一饮而尽。原来,把酒变成醋酸的魔力是来源于白金粉末,是它加快了乙醇(酒精)和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。
1836年,他还在《物理学与化学年鉴》杂志上发表了一篇论文,首次提出化学反应中使用的“催化”与“催化剂”概念。

选择性

催化剂有的是单一化合物,有的是络合化合物,有的是混合物。催化剂有选择性,不同的反应所用的催化剂有所不同,例如淀粉氧化用的催化剂以NaClO2作氧化剂,Ni2+、Fe2+、Cu2+等催化作用较好;若用H2O2作氧化剂时,Fe2+、Mn2+等效果好,而Ni2+、Cu2+、Co2+等效果较差;当用KMnO4为氧化剂时,而是自身反应产生的Mn2+作催化剂,但Fe2+、Ni2+、Cu2+等均无催化作用。
同一反应也有不同效果的催化剂,例如聚乙烯醇缩甲醛化反应,以酸作催化剂,其效果是盐酸(HCl)>硫酸(H2SO4)>磷酸(H3PO4)。同是苯酚甲醛反应合成酚醛树脂,使用氢氧化钠氢氧化钡盐酸氨水草酸、醋酸、甲酸硫酸磷酸氧化镁氧化锌等催化剂,其产品性能都有所不同。

主要分类

催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂,均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。多相催化剂有固体酸催化剂、有机碱催化剂、金属催化剂、金属氧化物催化剂、络合物催化剂、稀土催化剂、分子筛催化剂、生物催化剂、纳米催化剂等;按照反应类型又分为聚合缩聚、酯化、缩醛化、加氢脱氢氧化、还原、烷基化异构化等催化剂;按照作用大小还分为主催化剂和助催化剂。

均相催化

催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性

多相催化

镍催化剂

镍催化剂

多相催化剂又称非均相催化剂呈如今不同相(Phase)的反应中,即和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。现已知许多表反应发生吸附反应的不同可能性的结构位置。

生物催化

生物催化剂,是植物、动物和微生物产生的具有催化能力的有机物(绝大多数的蛋白质。但少量RNA也具有生物催化功能),旧称酵素。酶的催化作用同样具有选择性。例如,淀粉酶催化淀粉水解为糊精和麦芽糖,蛋白酶催化蛋白质水解成肽等。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。酶在生理学、医学、农业、工业等方面,都有重大意义。当前,酶制剂的应用日益广泛。(例如:酶制剂在工业上可作催化剂使用,某些酶还是珍贵的药物。)

催化反应

人们利用催化剂,可以改变化学反应的速率,这被称为 催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。
使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入0.01%~0.02%没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。
当前,对催化剂的作用还没有完全弄清楚。在大多数情况下,人们认为催化剂本身和反应物一起参加了化学反应,降低了反应所需要的活化能。有些催化反应是由于形成了很容易分解的“中间产物”,分解时催化剂恢复了原来的化学组成,原反应物就变成了生成物。有些催化反应是由于吸附作用,吸附作用仅能在催化剂表面最活泼的区域(叫做活性中心)进行。活性中心的区域越大或越多,催化剂的活性就越强。反应物里如有杂质,可能使催化剂的活性减弱或失去,这种现象叫做催化剂的中毒。
催化剂对化学反应速率的影响非常大,有的催化剂可以使化学反应速率加快到几百万倍以上。催化剂一般具有选择性,它仅能使某一反应或某一类型的反应加速进行。例如,加热时,甲酸发生分解反应,一半进行脱水,一半进行脱氢
HCOOH=H2O+CO
HCOOH=H2+CO2
如果用固体Al2O3作催化剂,则只有脱水反应发生;如果用固体ZnO作催化剂,则脱氢反应单独进行。这种现象说明,不同性质的催化剂只能各自加速特定类型的化学反应过程。因此,我们利用催化剂的选择性,可使化学反应主要向某一方向进行。
在催化反应里,人们往往加入催化剂以外的另一物质,以增强催化剂的催化作用,这种物质叫做助催化剂。助催化剂在化学工业上极为重要。例如,在合成氨的铁催化剂里加入少量的铝和钾的氧化物作为助催化剂,可以大大提高催化剂的催化作用。
钯催化剂被广泛应用于工业

钯催化剂被广泛应用于工业

催化剂在现代化学工业中占有极其重要的地位,几乎有半数以上的化工产品在生产过程里都采用催化剂。例如,合成氨生产采用铁催化剂,硫酸生产采用钒催化剂,乙烯的聚合以及用丁二烯制橡胶等三大合成材料的生产中,都采用不同的催化剂。据统计,约有80%~85%的化工生产过程使用催化剂(如氨、硫酸、硝酸的合成,乙烯、丙烯苯乙烯等的聚合,石油、天然气、煤的综合利用,等等),目的是加快反应速率,提高生产效率。在资源利用、能源开发、医药制造、环境保护等领域,催化剂也大有作为,科学家正在这些领域探索适宜的催化剂以期在某些方面有新的突破。催化剂显然是参加了反应,只是作为一个反应中介,在反应前后总量不变(注意,不是在反应中总量不变),而使得加快或减缓反应速度的一种物质。
比如有反应 A+B=C
而A+R=X ,X+B=C+R 这样反应的话,速度会和上式不一样,
则R在反应前后问题没有变化,则可说R是反应A+B=C的催化剂。
行业发展趋势
美国Freedonia集团日前发布的最新研究报告显示,未来5年虽然全球化工行业仍将维持健康发展的势头,但化工催化剂需求增速将是所有催化剂终端领域中最慢的,尤其是有机合成催化剂需求将受到医药工业缺乏新产品的不利影响,然而这种不利的影响会被非洲、亚太、东欧和中东地区石化工业的扩能所弥补;聚合催化剂的需求增速则将是所有催化剂品种中最快的,主要原因是非洲和中东地区聚合物产能的快速扩张;由于加氢处理催化剂需求量稳步增长以及非洲、中东和亚太地区油品产量较高,炼油催化剂需求也将非常强劲。全球都在通过减少车用燃料的含硫量来减轻空气污染,这将继续增加催化剂的装载量。
据Freedonia称,未来5年全球催化剂市场需求的年均增速有望接近6%,到2012年全球催化剂市场份额将达到163亿美元。其中,北美市场占32%的市场份额,亚太占31%,西欧占21%,东欧、拉美占9%,非洲、中东占7%。如果按需求量计算,未来5年全球催化剂有望以年均2%的速度增长,到2012年全球催化剂市场需求量将达到530万吨。

实际用途

在化工生产、科学家实验和生命活动中,催化剂都大显身手。例如,硫酸生产中要用五氧化二钒作催化剂。由氮气氢气合成氨气,要用以铁为主的多分组催化剂,提高反应速率。在炼油厂,催化剂更是少不了,选用不同的催化剂,就可以得到不同品质的汽油、煤油。化工合成酸性和碱性色可赛思催化剂。车尾气中含有害的一氧化碳一氧化氮,利用铂等金属作催化剂可以迅速将二者转化为无害的二氧化碳和氮气。酶是植物、动物和微生物产生的具有催化能力的蛋白质,生物体的化学反应几乎都在酶的催化作用下进行,酿造业、制药业等都要用催化剂催作。
我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。

制造方法

催化剂

催化剂

制造催化剂的每一种方法,实际上都是由一系列的操作单元组合而成。为了方便,人们把其中关键而具特色的操作单元的名称定为制造方法的名称。传统的方法有机械混合法、沉淀法、浸渍法、溶液蒸干法、热熔融法、浸溶法(沥滤法)、离子交换法等,现发展的新方法有化学键合法、纤维化法等。

机械混合

将两种以上的物质加入混合设备内混合。此法简单易行,例如转化-吸收型脱硫剂的制造,是将活性组分(如二氧化锰、氧化锌碳酸锌)与少量粘结剂(如氧化镁、氧化钙)的粉料计量连续加入一个可调节转速和倾斜度的转盘中,同时喷入计量的水。粉料滚动混合粘结,形成均匀直径的球体,此球体再经干燥、焙烧即为成品。乙苯脱氢制苯乙烯的Fe-Cr-K-O催化剂,是由氧化铁、铬酸钾等固体粉末混合压片成型、焙烧制成的。利用此法时应重视粉料的粒度和物理性质。

沉淀法

此法用于制造要求分散度高并含有一种或多种金属氧化物的催化剂。在制造多组分催化剂时,适宜的沉淀条件对于保证产物组成的均匀性和制造优质催化剂非常重要。通常的方法是在一种或多种金属盐溶液中加入沉淀剂(如碳酸钠、氢氧化钙),经沉淀、洗涤、过滤、干燥、成型、焙烧(或活化),即得最终产品。如果在沉淀桶内放入不溶物质(如硅藻土),使金属氧化物或碳酸盐附着在此不溶物质上沉淀,则称为附着沉淀法。沉淀法需要高效的过滤洗涤设备,以节约水,避免漏料损失。

浸渍法

将具有高孔隙率的载体(如硅藻土、氧化铝、活性炭等)浸入含有一种或多种金属离子的溶液中,保持一定的温度,溶液进入载体的孔隙中。将载体沥干,经干燥、煅烧,载体内表面上即附着一层所需的固态金属氧化物或其盐类(图1)。浸渍法可使催化活性组分高度分散,并均匀分布在载体表面上,在催化过程中得到充分利用。制备含贵金属(如铂、金、锇、铱等)的催化剂常用此法,其金属含量通常在 1%以下。制备价格较贵的镍系、钴系催化剂也常用此法,其所用载体多数已成型,故载体的形状即催化剂的形状。另有一种方法是将球状载体装入可调速的转鼓(图2)内,然后喷入含活性组分的溶液或浆料,使之浸入载体中,或涂覆于载体表面。

喷雾蒸干法

用于制颗粒直径为数十微米至数百微米的流化床用催化剂。如间二甲苯流化床氨化氧化制间二甲腈催化剂的制造,先将给定浓度和体积的偏钒酸盐和铬盐水溶液充分混合,再与定量新制的硅凝胶混合,泵入喷雾干燥器内,经喷头雾化后,水分在热气流作用下蒸干,物料形成微球催化剂,从喷雾干燥器底部连续引出。

热熔融法

热熔融法是制备某些催化剂的特殊方法,适用于少数不得不经过熔炼过程的催化剂,为的是借助高温条件将各个组分熔炼称为均匀分布的混合物,配合必要的后续加工,可制得性能优异的催化剂。这类催化剂常有高的强度、活性、热稳定性和很长的使用寿命。主要用于制造氨合成所用的铁催化剂。将精选磁铁矿与有关的原料在高温下熔融、冷却、破碎、筛分,然后在反应器中还原。

浸溶法

从多组分体系中,用适当的液态药剂(或水)抽去部分物质,制成具有多孔结构的催化剂。例如骨架镍催化剂的制造,将定量的镍和铝在电炉内熔融,熔料冷却后成为合金。将合金破碎成小颗粒,用氢氧化钠水溶液浸泡,大部分铝被溶出(生成偏铝酸钠),即形成多孔的高活性骨架镍。

离子交换法

催化剂

催化剂

某些晶体物质(如合成沸石分子筛)的金属阳离子(如Na)可与其他阳离子交换。 将其投入含有其他金属(如稀土族元素和某些贵金属)离子的溶液中,在控制的浓度、温度、pH条件下,使其他金属离子与 Na进行交换。由于离子交换反应发生在交换剂表面,可使贵金属铂、钯等以原子状态分散在有限的交换基团上,从而得到充分利用。此法常用于制备裂化催化剂,如稀土-分子筛催化剂。

发展中的新方法

①化学键合法。此法现大量用于制造聚合催化剂。其目的是使均相催化剂固态化。能与过渡金属络合物化学键合的载体,表面有某些官能团(或经化学处理后接上官能团),如-X、-CH2X、-OH基团。将这类载体与膦、胂或胺反应,使之膦化、胂化或胺化,然后利用表面上磷、砷或氮原子的孤电子对与过渡金属络合物中心金属离子进行配位络合,即可制得化学键合的固相催化剂,如丙烯本体液相聚合用的载体──齐格勒-纳塔催化剂的制造。②纤维化法。用于含贵金属的载体催化剂的制造。如将硼硅酸盐拉制成玻璃纤维丝,用浓盐酸溶液腐蚀,变成多孔玻璃纤维载体,再用氯铂酸溶液浸渍,使其载以铂组分。根据实用情况,将纤维催化剂压制成各种形状和所需的紧密程度,如用于汽车排气氧化的催化剂,可压紧在一个短的圆管内。如果不是氧化过程,也可用碳纤维。纤维催化剂的制造工艺较复杂,成本高。

使用发展

催化剂用量很少,一定要选用得当,最好使用混合型催化剂。无机酸、碱、盐催化剂都有一定的腐蚀性和毒害性;有机类催化剂多数易燃,甚至有爆炸性,还有毒性,像三氟化硼一乙醚络合物属剧毒物,在处理、储存和使用时都要注意安全。
催化剂的发展应是高效化、低腐蚀化、纳米化、环保化。高效可以用量更少,低腐蚀可减少对设备的损害,纳米化可使金属氧化物催化剂效率更高,环保化有益于健康和环境友好。
新型催化剂
英国剑桥大学研究人员,发明了一种新型催化剂,可在普通的酸碱度、温度等条件下将水分解制备氢气,由此得到的氢气可用于氢燃料电池等方面。

发展过程

第一个催化剂生产车间是永利铔厂触媒部,1959年改名南京化学工业公司催化剂厂。于1950年开始生产AI型合成氨催化剂、C-2型一氧化碳高温变换催化剂和用于二氧化硫氧化的Ⅵ型钒催化剂,以后逐步配齐了合成氨工业所需各种催化剂的生产。80年代中国开始生产天然气及轻油蒸汽转化的负载型镍催化剂。至1984年已有40多个单位生产硫酸、硝酸、合成氨工业用的催化剂。
为发展燃料化工,50年代初期,石油三厂开始生产页岩油加氢用的硫化钼 -白土、硫化钨-活性炭、硫化钨-白土及纯硫化钨、硫化钼催化剂。石油六厂开始生产费托合成用的钴系催化剂,1960年起生产叠合用的磷酸-硅藻土催化剂。60年代初期,中国开发了丰富的石油资源,开始发展石油炼制催化剂的工业生产。当时,石油裂化催化剂最先在兰州炼油厂生产,1964年小球硅铝催化剂厂建成投产。70年代中国开始生产稀土-X型分子筛和稀土-Y型分子筛。70年代末在长岭炼油厂催化剂厂,开始生产共胶法硅铝载体稀土-Y型分子筛,以后在齐鲁石化公司催化剂厂开始生产高堆比、耐磨半合成稀土-Y型分子筛。60年代起中国即开始发展重整催化剂,60年代中期石油三厂开始生产铂催化剂,70 年代先后生产出双金属铂-铼催化剂及多金属重整催化剂。在加氢精制方面,60年代石油三厂开始生产钼-钴及钼-镍重整预加氢催化剂。70年代开始生产钼-钴-镍低压预加氢催化剂,80年代开始生产三叶形的加氢精制催化剂。
为发展有机化学工业,50年代末至60年代初开始制造乙苯脱氢用的铁系催化剂,乙炔加氯化氢制氯乙烯的氯化汞/活性炭催化剂,流化床中萘氧化制苯酐用的氧化钒催化剂,以及加氢用的骨架镍催化剂等。60年代中期为适应中国石油化工发展的需要,新生产的催化剂品种迅速增多,至80年代已生产多种精制烯烃的选择性加氢催化剂,并开始生产丙烯氨化氧化用的微球型氧化物催化剂,乙烯与醋酸氧化制醋酸乙烯酯的负载型金属催化剂,高效烯烃聚合催化剂以及治理工业废气的蜂窝状催化剂等。

发展前景

催化剂用于催化环氧化物与二氧化碳的共聚反应合成聚烷撑碳酸酯,可广泛应用于低温隔氧薄膜、生物降解塑料、弹性体、胶粘剂、涂料等领域。合成该类聚合物不仅可以对工业上大量废弃且对环境造成极大危害的温室气体——二氧化碳加以有效利用,同时产物还具有生物降解性,不会带来通常塑料导致的白色污染,因而具有广阔的市场前景。

催化剂中毒原因

原因之一:“阳离子”中毒
1、阳离子的组成:C4原料中的金属离子和碱性氮化物、氨气和有机胺。
2、阳离子的来源:
①上游原料水洗不彻底而带来的钠离子、钙离子;
②设备管道或阀门所产生的可溶性的铁离子、铬离子;
③FCC分子筛中的微量铝离子和硅离子;
④C4中的氨、甲胺等碱性化合物也属于阳离子的范畴。
3、中毒原理和形式:这些阳离子和催化剂中的SO3OH产生离子交换而使催化剂“中毒”。反应式如下:SO3OH+M+(Na+、Ca2+、Fe3+、Cr4+、Al4+、NH4+、CH3NH2+……)
中毒形式:“一层一层”地中毒,即:先接触物料的先中毒,后接触物料暂不中毒。
原因之二:可水解的腈类和酰胺类物质中毒
①在催化裂化中,C4、C5原料通常含有乙腈、丙腈。
②蒸气裂解C4料原中,偶尔会带有上游的丁二烯之抽提用的DMF.
原因之三:新型水处理药剂催化剂孔道堵塞,使催化剂失活。
原因之四:催化基团脱落,使催化剂失活。
新型水处理药剂催化剂最高耐温120℃,但长时间在此温度下运行,催化剂的磺化基团会从结构骨架上脱落下来,而流入液相中,从而造成催化剂失活。

驱动名称

催化剂:AMD(ATI)显卡驱动程序的名称 (Catalyst),而催化剂控制面板一般有一般是两个MOM.exe进程和CCC.exe进程等组成,被AMD收购受成为AMD显卡催化剂。
AMD(ATI) Radeon HD 2400/HD 2600/HD 2900/HD 3400/HD 3600/HD 3800/HD 4350/HD 4550/HD 4600/HD 4650/HD 4670/HD 4770/HD 4800/HD 4850 X2/HD 4870 X2/HD 4890系列显卡催化剂驱动9.8正式版For WinXP(2009年8月15日发布)AMD高级市场经理Ian McNaughton今天不仅在其博客中介绍了在QuakeCon 2009大会上的新品展示问题,还提前放出了催化剂9.8驱动包,。由于尚未公开发行,所以无法得知具体更新,从INF文件看,催化剂9.8版本号8.640,编译于7月14日,支持全系列Radeon HD 2000/3000/4000桌面显卡和对应的集成与专业型号,而且发布不久的785G整合芯片组核心Radeon HD 4200和第二款40nm桌面产品Radeon HD 4750都已位列其中,但没有国内专用卡Radeon HD 4860,官方网站会在17日正式公开。另外,从文件来看今天发布的都是集成催化剂控制中心(CCC)和相关程序的完整版本,虽然仅带有英文语言,但如果你已经安装了简体中文的旧版驱动,升级过程中就是熟悉的中文界面,完成后就能得到简体中文的催化剂9.8了,推荐玩家下载更新
AMD如期发布了催化剂10.3 WHQL官方正式版,无论功能特性还是游戏性能,以及可靠性和稳定性,都跃上了一个新台阶,属于绝对重量级的新驱动。事实上,催化剂10.3驱动是AMD用来对付NVIDIA GF100的关键武器,理论上应该让Radeon HD 5850/GeForce GTX 470、Radeon HD 5870/GeForce GTX 480分别持平甚至小有胜出,而且本月底还有Radeon HD 5870 Eyefinity 6六屏输出版,将凭借2GB GDDR5的更大容量显存占据优势地位,如此种种都在一定程度上迫使NVIDIA推迟了新卡的发售,并抓紧研发新驱动,双方的竞争也到了剑拔弩张的地步。其实催化剂10.3原本计划在本月中旬前后发布,但为了等待竞争对手而潜伏至今,一周前的预览版反而更新一些:正式版编译于3月2日,显示版本号8.712,通过了微软WHQL认证,而预览版编译于3月13日,版本号8.712.3,没有微软认证,但增加了5870 Eyefinity 6的有关更新和《异形大战铁血战士》的进一步优化。
1.“Catalyst Mobility”同时每月例行支持移动显卡。从这月开始,AMD催化剂驱动不但针对桌面显卡每月升级一次,也会同时照顾到移动显卡,全面支持Mobility Radeon HD 2000/3000/4000/5000系列显卡和大多数主要OEM/ODM笔记本厂商的产品,不过操作系统仅限Windows Vista/7。
2.催化剂控制中心ATI Eyefinity多屏输出技术增强
3.支持3D立体眼镜AMD已经升级了Direct3D显示驱动,支持四缓冲(Quad Buffer),从而能够启用iZ3D等第三方厂商的中间件,在120Hz刷新率显示器上输出左右立体图像。
4.Linux催化剂10.3Linux版本这次主要增加了对Red Hat Enterprise Linux 5.5的初步支持。
这大概是催化剂有史以来游戏性能提升范围最广泛的一次了,主要面向Radeon HD 5000/4800系列最新显卡,涉及3款基准性能测试程序和多达17款游戏,其中《尘埃2》、《鹰击长空》等游戏尤为突出,而其他程序和游戏虽然提升幅度普遍都是个位数,但如此长期累积下来的效果也是相当惊人的。
3DMark Vantage:5000系列总分提升最多8%,5800系列显卡子项得分提升最多4%,5000系列其他型号显卡子项得分提升最多3%。《异形大战铁血战士》:5000系列整体性能提升5%。《BattleForge》:5000系列提升最多8%,4800系列提升最多3%。《使命召唤:战争世界》:5800系列提升最多2%,4800系列提升最多6%。《英雄连》:5000系列提升最多6%,4800系列提升最多3%。《Crysis》/《Crysis Warhead》:5000系列提升最多6%,4800系列提升最多2%。《鬼泣4》:5000系列提升最多10%,4800系列提升最多6%。《尘埃2》:5970提升最多30%,5800系列提升最多20%,4800系列提升最多10%。《敌占区:雷神战争》:5800系列提升最多5%,5000系列提升最多3%,48000系列提升最多2%。《Far Cry 2》:5000系列提升最多6%,4800系列提升最多4%。《Left 4 Dead》/《Left 4 Dead 2》:4800系列提升最多3%。《S.T.A.L.K.E.R.:普里皮亚季的召唤》(基准测试):5000系列开启反锯齿的时候提升最多10%。《S.T.A.L.K.E.R.:晴空》:5970提升最多2%,5800系列提升最多2%。《生化危机5》:5000系列提升最多5%,4800系列提升最多3%。《鹰击长空》:5970提升最多15%,5800/5700系列提升最多20%,4800系列提升最多3%。Unigine Tropics演示与测试程序:5000系列提升最多5%。《冲突世界》:5800系列提升最多5%,5700系列提升最多3%,4800系列提升最多5%。《德军总部》:5000系列提升最多4%,4800系列提升最多4%。
新驱动又修复了多达35个各种问题,其中所有Windows 3个、Windows 7 13个、Windows Vista 6个、Windows XP 5个、Linux 8个。
催化剂:由原意引申出来,指对事物发展具有促进作用的东西。如“情感的催化剂”,“工业革命的催化剂——战争”等。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定