提出用单个量子位的叠加态进行量子编码。
The quantum encoding is put forward by using superposition state of single qubit.
提出了一种基于量子克隆的量子编码和纠错方案。
We present a quantum error correction scheme based on quantum cloning.
量子纠错编码作为其中的一种量子编码方案,是量子通信和量子计算实用化的基础。
As a kind of quantum coding scheme, quantum error-correction coding is the foundation of realization of quantum communication and quantum computation.
为了提高量子门的保真度到尽可能高的水平,人们提出了基于几何相的量子门方案,以及量子编码方案等。
To suppress the infidelity to an acceptable level, a promising approach based on geometric phases was proposed as well as quantum encoding scheme.
当a被测量,那么根据量子世界中的古怪规则,先前被编码到A中的信息就会消失。
When a is measured, the information that had been previously encoded on it disappears in accordance with the quirky rules of the quantum world.
此外,量子信息能开发出许多经典信息所无法做到的新的信息功能,如量子隐形传态、量子密集编码等。
Furthermore, quantum information can develop a lot of new information functions that classical information doesn't have, such as quantum teleportation, quantum dense coding, etc.
实验表明这样的系统工作稳定可靠,与偏振编码一样,相位编码也可用于自由空间的量子密钥分配。
The set up is stable and secure and it is proved that the phase can be used as coding in the free space QKD just like the polarization.
介绍了量子连续变量编码。
首先,在研究BB 84协议各种具体实现方法的基础上,提出了一种基于偏振编码的量子密钥分发方案,该方案仅使用一台单光子探测器。
Firstly, based on the analysis of some implementations of BB84 protocol, we developed a scheme of quantum key distribution by using polarization encoding and only one single photon detector.
第三章:详细讨论了基于相位调制偏振编码的量子保密通信系统。
Chapter3: This chapter discusses the quantum cryptography system based on phase modulation polarization coding technology in details.
这就是量子密集编码。
本论文给出了一种高效率、高信容的量子密钥分布模型,同时将量子密集编码推广到一般的多方高维的情况。
In this thesis, the author proposes a theoretically efficient high-capacity quantum key distribution scheme and generalizes the quantum dense coding to super dense coding between multiparty.
拓扑量子计算中信息编码是非局域的,基本上不受周围环境的影响,因此错误率很低,具有自动容错的功能。
Quantum information is encoded non-locally in TQC and it is not influenced by the interaction of qubits with their environment, so the fault rate can be very low.
另外,量子隐形传态在量子稠密编码和量子密码术中有许多应用。
Moreover, it may have applications in quantum dense coding and quantum cryptography.
目前量子纠错编码理论已日趋完善,许多经典的编码技术在量子领域中都可以找到相应的编码方法。
So far, the theory of quantum error-correction coding has become more and more perfect. Many corresponding methods of classical coding techniques have been found in quantum field.
运用量子熵理论,引入量子无噪声编码方法,并研究了量子信道中的信息容量问题。
The quantum noiseless coding method is discussed with the quantum entropy theory, and the capacity of quantum channel.
使用量子比特编码染色体,构造一种新的用于普通染色体的全干扰交叉操作。
It adopts quantum bits code chromosome, and constructs a new entirety interference crossover which ACTS on general chromosome crossover manipulation.
量子通信是量子信息学的一个重要分支,主要包括量子隐形传态、量子稠密编码、量子秘钥分配等。
Quantum communication is an important branch of quantum information, embracing quantum teleportation, quantum dense coding, quantum key distribution and so on.
该算法采用量子比特概率编码方式构造染色体,由量子旋转门操作实现种群进化。
This algorithm codes the chromosomes in the way of quantum bit probability, and makes the population evolve by the operation of quantum gate.
继德尔塔科学家对量子旋转编码的改进之后,第一个真正的量子cpu诞生了。
Following refinements of Photon Spin Encoding technology by Deltan Scientists the first true Quantum CPU is born.
第三章介绍我们关于量子密集编码和量子克隆基本知识。
In chapter 3 I introduce the basic thought of quantum dense coding and quantum cloning.
量子密钥分配利用光量子的偏振态为信息编码,借此完成加密的工作。光量子是光的微粒形态,可利用光纤从Alice发送至Bob那里。
Quantum key distribution does this by encoding the information in the polarisation states of individual photons, the particles of light, which are sent from Alice to Bob over an optical fibre.
量子通信是量子信息学的一个非常重要的分支,目前主要涉及到量子隐形传态、量子密集编码、量子密钥分配等。
Quantum communication is a very important branch of quantum information. At present, it mainly contains quantum teleportation, quantum dense coding, quantum key distribution, and so on.
实验结果表明:量子密集编码只需传送N-1个量子位便可以传递N个经典位的信息。
The experimental results show that QSDC only needs to transfer(N-1) qubits during transmitting N bits classical information;
实验结果表明:量子密集编码只需传送N-1个量子位便可以传递N个经典位的信息。
The experimental results show that QSDC only needs to transfer(N-1) qubits during transmitting N bits classical information;
应用推荐