提出了实现图象几何变换的迭代函数系统(IFS)参数修改法,导出了实现图象平移、旋转和缩放的IFS参数变换公式。
A novel image geometry transformation method based on modifying IFS coefficients is proposed. Formulas for modifying IFS parameters to translate, to rotate and to dilate images are presented.
目前迭代函数系统中的变换多限于仿射变换,而仿射迭代函数系统对于区域的任意四边形不规则剖分情形是不能实现的。
At present, the transform in IFS is limit to affine transform. However, affine IFS is unable to do anything with the anomalous dissection on discretionary quadrangle area.
分析了基于部分迭代函数系统(PIFS)的传统分形图像压缩编码中8 种对称旋转变换对编码性能的影响;
The effects of 8 isometry transforms used in PIFS based fractal image coding on performance are discussed.
一旦迭代过程收敛,通过对点扩散函数进行傅立叶变换即可得到待测低分辨率图像的MTF。
Once the process has converged, taking the Fourier Transform of the PSF gives the estination of the low resolution image MTF.
方法分析双曲对称群的特点,改造欧式平面上构造经典分形的IFS迭代函数系,利用这种迭代函数系与双曲平面对称变换构造出组合IFS,通过随机挑选组合IFS中的仿射变换,构造双曲排列的分形集。
We recall the characteristics of the groups with hyperbolic symmetry and improve the IFS iterated function systems which are used to construct the classical fractal sets in the Euclidian plane.
方法分析双曲对称群的特点,改造欧式平面上构造经典分形的IFS迭代函数系,利用这种迭代函数系与双曲平面对称变换构造出组合IFS,通过随机挑选组合IFS中的仿射变换,构造双曲排列的分形集。
We recall the characteristics of the groups with hyperbolic symmetry and improve the IFS iterated function systems which are used to construct the classical fractal sets in the Euclidian plane.
应用推荐