最后证明基于双重随机样本的统计学习理论的关键定理并讨论学习过程一致收敛速度的界。
Finally the key theorem of statistical learning theory based on random rough samples is proved, and the bounds on the rate of uniform convergence of learning process are discussed.
本文主要研究目前较为流行的基于统计学习理论的分类方法——支持向量机方法(SVM),以及小波变换提取特征的方法,将其用于人脸检测。
This paper mainly make research on classify methods based on statistical theory, support vector machine (SVM), and feature extraction method-wavelet transform, and using them in human face detection.
支撑矢量机是根据统计学习理论提出的一种新的学习方法,即使用核函数在高维空间里进行有效的计算。
The support vector machine is a novel type of learning technique, based on statistical learning theory, which USES Mercer kernels for efficiently performing computations in high dimensional Spaces.
支持向量机是一种基于统计学习理论的新型机器学习方法,它可以被广泛地用于非线性系统建模。
Support vector machine (SVM) is a brand-new machine learning technique based on statistical learning theory. It is an ideal facility for modeling of various nonlinear systems.
支持向量机(SVM)是基于统计学习理论的新一代机器学习技术。
Support vector machine (SVM) is a new generation machine learning technique based on the statistical learning theory.
本文首次将统计学习理论及支持向量机方法引入提高采收率方法的潜力预测中。
In this paper, statistical learning theory and support vector machine method are introduced in eor potentiality prediction for the first time.
支持向量机是基于统计学习理论框架下的一种简单、有效的分类方法。
Support Vector Machines algorithm is a simple and effective classification method based upon statistical learning theory.
为了系统地归纳统计学习理论与支持向量机的基本思想和算法,总结目前该领域的最新研究成果。
The basic statistical learning theory (SLT) and its corresponding algorithms, support vector machines (SVMs), are surveyed, and especially, its latest research results are summarized and studied.
与传统统计学相比,统计学习理论是一种专门研究小样本情况下机器学习规律的理论。
Compared with statistical theory, statistical learning theory focuses on the machine learning of small sample size and can trade off between the complexity of models and generalization performance.
本文对目前地下水环境质量预测的研究方法进行了系统总结,详细地阐述了统计学习理论研究的基本问题及主要内容。
In this thesis, the current groundwater quality prediction methods were systematically summarized and the essential issues and main contents of statistical learning theory are elaborated.
本项目以统计学习理论为基础,深入研究了应用支持向量机方法解决机械智能诊断和状态预测的相关问题。
Based on statistical learning theory (SLT), the relevant problems of solving the machinery intelligent diagnosis and condition prediction are thoroughly researched in this project by means of SVM.
支持向量机是一种基于统计学习理论的新型学习机。
The support vector machine (SVM) is a new learning machine based on the statistical learning theory.
在分类器的设计上,重点讨论了最近邻分类器和基于统计学习理论的支持向量机(SVM)。
We emphases discussed the nearest neighbor classifier and support vector machine (SVM) based on the statistical study theory.
基于支持向量机的直推式学习是统计学习理论中一个较新的研究领域。
Transductive inference based on support vector machine is a relatively new research region in statistical learning theory.
首先概述了本文研究内容的基础—统计学习理论与支持向量机方法,为本文后续的研究方向和内容进行了铺垫。
This paper's basic concepts of Statistical Learning Theory and SVM are summarized firstly, which are the groundwork of next research works.
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。
Support vector machines (SVM) are a kind of novel machine learning methods, based on statistical learning theory, which have been developed for solving classification and regression problems.
支持向量机是基于VC维和统计学习理论理念的数据挖掘中的一种新方法。
Support Vector Machine is a new method based on the idea of VC dimension and Statistical Learning Theory in data mining.
支持向量机是统计学习理论的一个重要学习方法,也是解决模式识别问题的一个有力工具。
Support Vector Machine (SVM) is an important learning method of statistical learning theory, and is also a powerful tool for pattern recognition.
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。
Support vector machines (SVM) are a kind of novel machine learning methods based on statistical learning theory, which has been developed to solve classification and regression problems.
支持向量机是基于统计学习理论的一种新的机器学习方法。
Support Vector machine is a kind of new machine studying method, which is based on Statistical Learning Theory.
支持向量机是机器学习领域的研究热点之一,其理论基础是统计学习理论。
Support Vector machine is one of the hot points in machine learning research, it's theoretical basis is Statistical learning Theory.
支持向量机是一种基于统计学习理论的新型机器学习方法。
Support vector machine (SVM) is a new learning machine based on the statistical learning theory.
基于统计学习理论中结构风险最小化原则的支持向量机是易于小样本的机器学习方法。
Support vector machine (SVM) based on the structural risk minimization of statistical learning theory is a method of machine learning for small sample set.
建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。
Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle.
为此,结合统计学习理论的研究成果,建立了基于最小一乘准则的最优回归模型,并将其应用于商业银行的信贷风险评估中。
Thus, combined with research results of statistic learning theory, the optimal regress model based on least-absolute criteria, or LaOR model was proposed to solve the problem.
本文在经典统计学习理论的基础上,讨论了可能性空间上学习过程一致收敛速度的界。
In this paper, the bounds on the rate of uniform convergence of the learning processes on possibility space are discussed based on the classic Statistical learning Theory.
其次,认真研究了统计学习理论的主要内容和SVM算法的基本原理,并且就SVM的多种多类别分类算法分别加以讨论。
Secondly, the text studies the Statistical Learning Theory(STL) and Support Vector Machine(SVM)theory seriously, discusses multi-category classification algorithms of SVM.
其次,认真研究了统计学习理论的主要内容和SVM算法的基本原理,并且就SVM的多种多类别分类算法分别加以讨论。
Secondly, the text studies the Statistical Learning Theory(STL) and Support Vector Machine(SVM)theory seriously, discusses multi-category classification algorithms of SVM.
应用推荐