但这一偏微分方程不能直接积分,所以通常用纳维法、瑞利-里兹法、有限差分方法等方法求解。
But this partial differential equation can not be directly integral, so usually use Navier method, Rayleigh Ritz method and finite difference method and other methods.
利用时间域有限差分(FDTD)法将麦克斯韦方程进行离散化,可以对地质雷达进行数值模拟。
Maxwell's equations can be discretized by finite difference time domain (FDTD) to simulate ground penetrating radar (GPR).
所得的非饱和土壤水运动方程对时间的差分方程,在空间上不仅可用有限元法而且可用有限差分法处理。
The time difference equation derived from unsaturated flow equation can be approximated by Galerkin finite element or finite difference method for space coordinate derivatives.
进一步地,我们采用二分法与相平面分析结合的方法计算压差方程的数值解。
Furthermore, we compute the Riemann solution by using a bisection method combined with the phase-plane analysis.
首次给出求解确定性与随机常系数差分方程及确定性与随机时变系数差分方程的统一方法;
The unified method of solving LDS(linear discrete system) difference equations of determinate and time varying coefficients as well as stochastic and stochastic time varying coefficients is proposed.
时域有限差分(FD - TD)法是麦氏方程的差分形式的数值解法,用于求解任意复杂目标与电磁场的相互作用问题。
FD-TD is a numerical method to seek the solution of-Maxwell equation in time domain, which can be used to analyze the interactions between electromagnetic field and complicated objects.
采用二分步法,从积分型方程出发,在有限控制体上建立守恒型差分格式,对二维浅水波方程进行求解。
By use of the time split method, a conservation difference formula is established to find the solution to the shallow water equation based on the finite volume control method from integral equations.
控制方程是一维非定常气体动力学偏微分方程组,用隐式中心差分结合特征线法解算。
The numerical solution of the governing equations, pertaining to one-dimensional unsteady gas dynamics, utilizes an implicit finite-difference scheme combined with the method of characteristics.
用三维控制容积法推导了传热、导电的有限差分方程。
The finite difference equations was deduced using three dimensional control volume method.
对于坑(井)—地的特殊情况,利用有限差分和积分方程法进行了正演模拟计算,获得了数据。
For the pit (well) -ground special circumstances, Using the finite difference and integral equation method forward modeling Observation data.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
应用推荐