本文中,我们采用概率事件结构作为语义模型,研究了概率进程代数的度量指称语义。
In this paper, we take probabilistic event structures as our semantic model and provide a metric denotational semantics for probabilistic process algebra.
事件结构是一种十分重要的真并发模型,非常适合于为进程代数提供一种具有可组合性的真并发语义。
Event structures are important true concurrent models and are well-suited to provide a true concurrent semantics for process algebra in a compositional way.
在量子光学、凝聚态物理、原子分子物理中存在许多典型的具有三生成元李代数结构的量子系统或模型。
There exist a number of typical systems and models which possess the three generator Lie algebraic structure in quantum optics, atomic and molecular physics and condensed matter physics.
他研究的几何在数学上叫做(李代数)E8结构。这个结构在1887年首先被挪威数学家SophusLie发现。
The geometry he has been studying is that of a structure known to mathematicians as E8, which was first recognised in 1887 by Sophus Lie, a Norwegian mathematician.
它体现了代数学中研究其他代数结构的基本思路。
It reflects the algebra in other algebraic structure of the basic idea.
代数动力学方法便是求解该系统的一种有效方法。该方法利用系统的代数结构使系统按照动力学规律随时间演化。
Algebraic dynamical method is an effective method to deal with the dynamical evolution of such systems by making use of its algebraic structure.
当然,随着粗糙结构与代数结构、拓扑结构、序结构等各种结构的不断整合,必将不断涌现出新的富有生机的数学分支。
Certainly, with the integration of rough structure and algebra structure, topology structure, order structure and the other structures, some new vital mathematical branches will be emerged.
当然,随着粗糙结构与代数结构、拓扑结构、序结构等各种结构的不断整合,必将不断涌现新的富有生机的数学分支。
Certainly, with integration of rough structure and algebra structure, topology structure, order structure and the other structure, some new vital mathematical branches will be emerged.
本文分析了连续模型一种并行算法的一般形式,由此提出了线性代数方程组通用的并行算法的结构形式。
This paper analyses the general form of algorithm about continous model, therefore puts forward the type of structure of parallel algorithm of linear algebraic equations.
其结果描述了这些代数内部结构的特征,同时也为从语义的角度进一步研究格值逻辑系统提供了一个新的途径。
Those results describe the characterizations of interior structures of those algebras, and also offer a new way for further researching lattice-valued logic systems from the semantics.
本文主要研究了等价关系的交并运算,建立了等价关系对于交并运算的代数结构。
This Paper study the intersection and union operations, with it establishes the algebraic structure of equivalence relations.
然后研究支撑解系的特征、性质、代数结构。
Then we research the character, properties, and algebraic structure of supporting solution systems.
粗糙集代数关系的图结构分析是粗糙集理论中又一研究方向。
The graphic structure analysis for algebraic relationship of rough sets is a new research direction of the rough set theory.
通过对卡诺结构多维性的分析讨论,推介一种新的几何代数算法,并充分论证其正确性和有效性。
Through commenting on the multiple dimensional character of Karnaugh structure, a new algebra-geometry algorithm with its correctness and efficiency is presented.
从而把姜豪的有限单BCK-代数结构定理完整地推广到无限的情形。
This extends totally the structure theorem of finite simple BCK algebras by Jiang Hao to the case of infinite simple BCK-algebras.
简介现代数控刀具科普知识和近几年来在刀具材料、结构科技领域里的现状及发展趋势。
The paper briefly introduces scientific knowledge of modern NC cutting tools and presents a review of NC tools' material and structure in recent years.
还研究了RNA二进制编码的代数结构。
The paper also investigates the algebraic structure of the binary digital coding of RNA.
刻划了一类含左零因子的代数的结构,解决了己有文献提出的问题。
The structures of a kind of algebras which contain left zero-divisors are characterized, and the problem advanced in Wu Pinshan's work ls solved.
其结构对称优美,在中学代数、三角、平面几何、平面解析几何中都有广泛应用。
Cauchy's inequality is characterized by its structurally symmetrical grace, which finds wide application in middle school algebra, geometory, plane geometory and analytic plane geometry.
讨论了李超代数上的左超对称结构与其上的1维上同调群的关系。
It discusses the relationship between left-supersymmetric structures on Lie superalgebra and its 1 th cohomology group.
元微分算子代数的导子李代数结构。
Lie algebras of derivations of n-differential operator algebra.
研究了标度广义效应代数与标度效应代数的代数结构,给出了比较完整的结果。
The complete constructions of scale generalized effect algebras and scale effect algebras are studied in this paper.
讨论特殊半对称联络的黎曼流形,给出了该流形曲率张量的一个代数结构。
In the present paper, the algebra property of Riemannian manifold which is contained some special semi symmetric connection is given.
结果表明代数动力学方法对于具有非半单李代数结构的线性动力系统仍然适用。
It has also been shown that the algebraic dynamics might be generalized from the linear dynamic system with a semi-simple Lie algebra to that with a general Lie algebra.
对具有泛包络代数结构的量子力学控制系统,研究了泛包络代数的可扩张性和系统状态的定义域问题。
For quantum mechanical control systems with structures of universal enveloping algebras, the thesis studies the enlargability of the universal enveloping algebras and the domain problems.
最后一部分中,我们讨论左对称代数和李代数上的左对称结构在着色李超代数中进一步的推广。
In the last part, we further generalize left symmetric algebra and left symmetric structure on Lie algebras into Lie color algebras.
作为推论,给出了格蕴涵代数的某些结构性定理。
As consequences it is given some of structure theorems of lattice implication algebras.
并通过算子代数的分解以及对称理想的结构给出各类退化算子代数的一般形式。
And give general forms of every class of degenerate operator algebras by the representations of this algebra and constructions of symmetric ideals.
该方法把结构振动的微分方程转化为振幅与频率的代数方程,并给出了流体力系数的经验公式。
The method transfers the structural vibration differential equations into algebraic equations and the empirical formulae about fluid force coefficients is put forward.
该方法把结构振动的微分方程转化为振幅与频率的代数方程,并给出了流体力系数的经验公式。
The method transfers the structural vibration differential equations into algebraic equations and the empirical formulae about fluid force coefficients is put forward.
应用推荐