通过建立二次型与对称双线性函数之间的对应关系,在双线性函数的概念下讨论二次型化标准型的问题,最后给出惯性定理的一个证明。
In this paper, we use the theory of symmetric bilinear function to solve problems of quadratic form, and finally give a proof of the inertia theorem.
涵盖的主题包括群、向量空间、线性转换、对称群、双线性结构、线性群等。
The subjects to be covered include groups, vector Spaces, linear transformations, symmetry groups, bilinear forms, and linear groups.
对一类2+1维双线性方程从两个不同角度建立了形式级数对称理论。
We established a formal series symmetry theory for a type of generalized 2+1dimensional bilinear equation in two different ways.
利用组合杂交有限元法得到了一个四节点轴对称元,并采用协调等参双线性位移来逼近及分片常数应力模式。
A 4-node axisymmetric solid element is derived by combined hybrid methods. Compatible isoparametric bilinear displacement approximations and the constant stress mode are employed.
利用组合杂交有限元法得到了一个四节点轴对称元,并采用协调等参双线性位移来逼近及分片常数应力模式。
A 4-node axisymmetric solid element is derived by combined hybrid methods. Compatible isoparametric bilinear displacement approximations and the constant stress mode are employed.
应用推荐