Euler equations of generalized Riemann variable are derived from unsteady primitive variable Euler equations and solved by using two - a point-two-step upwind finite difference method.
该方法将原参数非定常欧拉方程组重新组合成以广义黎曼变量表示的欧拉方程组,再用二点二步迎风格式离散求解。
Under the framework of finite volume method, the Riemann approximate solver is applied to obtain the numerical solution of the equation.
模型在有限体积法框架下应用黎曼近似解求得耦合方程的数值解。
The hyperbolic equations were formulated by artificial compressibility method with the convective terms discreted using a third-order upwind scheme based on Roe's approximate Riemann solver.
不可压粘性绕流的求解采用了人工压缩性方法,其中对流项的离散应用了三阶迎风格式。
The problems discussed can be transformed into Riemann-Hilbert problems by this method, then analytical solutions are obtained by self-similar functions.
采用自相似函数的方法可以获得解析解的一般表达式。
In this paper, we get a method to solve a non-linear RH problem by the Cauchy-Riemann conditions and the theories of partial differential equation.
利用柯西黎曼条件和偏微分方程理论,得到了一类非线性RH问题的求解方法,并通过实例表明该方法是可行的。
Furthermore, we compute the Riemann solution by using a bisection method combined with the phase-plane analysis.
进一步地,我们采用二分法与相平面分析结合的方法计算压差方程的数值解。
Furthermore, we compute the Riemann solution by using a bisection method combined with the phase-plane analysis.
进一步地,我们采用二分法与相平面分析结合的方法计算压差方程的数值解。
应用推荐