The differentiation matrices of unknown function are constructed by using barycentric rational interpolation.
采用重心有理插值近似未知函数,得到未知函数的各阶微分矩阵。
In this paper, the important Salzer's theorem for rational interpolation is generalized to the multivariate vector valued case.
本文将在切触有理插值中起重要作用的Salzer定理推广到了多元向量的情形。
Enlighened by the superposed algorithm of two element polynomial interpolation, we present a simple method of finding rational interpolation functions.
受二元多项式插值的迭加算法的启发,给出一种简便的求有理插值函数的方法,同时通过实例进行验证。
So the adaptive rational function interpolation method can process a large number of sampling data for obtaining a rational interpolation without suffering singularity problems.
因此,本文提出的自适应有理函数插值方法可以对大量采样数据进行插值运算而不会遇到奇异性问题。
The chapter 4, we mainly discuss the overlay algorithm of two-variable vector-valued rational interpolation and show formula of two-variable vector-valued contact interpolation.
第四章主要讨论了二元向量有理插值的迭加算法及二元向量切触有理插值的表现公式。
In this paper, a kind of rational interpolation method is given. Its error estimate and recurrence algorithm are also obtained. Numerical test shows that the convergence of this method is good.
本文研究了二元有理插值逼近,给出一种逼近方法及该方法的递推算法、误差估计和实例。
This paper puts forward the theorem dealing with the necessary and sufficient condition of the regular solution to the rational interpolation. The theorem is simple to prove and convenient to use.
本文给出了关于有理插值正则解的充要条件的一个定理,其证明是简单的,作为判别法则使用亦是方便的。
The error estimation of rational cubic spline with linear denominators is given, and then the interpolation of a kind of space closed curves under cylindrical coordinate system is investigated.
给出了具有线性分母的有理三次样条函数的误差估计,并在柱面坐标系下对一类空间闭曲线的插值问题进行了研究;
This paper presents a rational function interpolation scheme of polygonal elements based on highly irregular grids. It is named as polygonal rational function interpolation (RFI).
借鉴自然邻点插值法,提出了基于高度不规则网格多边形单元的有理函数插值格式—多边形有理函数插值。
This paper discusses the theory and several algorithms of rational function interpolation.
本课题对有理函数插值方法的理论及其算法进行了研究。
Adopting geometric method, the rational function interpolation is constructed on polygonal element.
采用几何的方法构造出多边形单元上的有理函数插值。
A new method of rational Boolean sum interpolation on an arbitrary triangle is developed in this paper. The structure of the interpolation function is simple.
本文提出了一个在三角形域上的有理布尔和插值的新方法,此方法的特点是所构造的插值函数结构简单,多项式准确集较高。
This attribute virtually leads the proposed AFS approach to an ultra broad-band interpolation with a single rational function.
这一特性使得AFS方法能通过简单的有理函数实现宽带插值。
In this paper we give a simple interpolation of rational function-difference spline interpolation.
给出一种简单的有理分式插值——差分样条插值。
In this paper we give a simple interpolation of rational function-difference spline interpolation.
给出一种简单的有理分式插值——差分样条插值。
应用推荐