The relationship between differences set pairs and perfect binary array pairs is given.
研究了差集偶的性质,给出了差集偶与最佳二进阵列偶之间的关系。
Theoretical basis for using differences set pairs to research perfect binary array pairs is provided.
为应用差集偶这种区组设计的方法研究最佳二进阵列偶提供了理论依据。
This paper aims at a new form signal-array pair, the theory of array pairs, perfect binary pairs and quasi-perfect binary array pairs is discussed synthetically.
本文针对一种新的信号形式一阵列偶,对阵列偶、最佳二进阵列偶以及准最佳二进阵列偶理论进行了综合探讨。
The conception "almost perfect arrays" is proposed and it is shown that the existence of an almost perfect binary array is equivalent to the existence of a certain divisible difference set.
研究了密码中的拟完美序列和完美序列与循环差集的关系,用群表示论证明了三族循环差集的存在;进而构造出相应的拟完美序列。
The conception "almost perfect arrays" is proposed and it is shown that the existence of an almost perfect binary array is equivalent to the existence of a certain divisible difference set.
研究了密码中的拟完美序列和完美序列与循环差集的关系,用群表示论证明了三族循环差集的存在;进而构造出相应的拟完美序列。
应用推荐