K-means algorithm is a classical clustering algorithm.
平均算法是经典的聚类算法。
This directory contains code implementing the K-means algorithm.
这个目录包含了K - means算法的代码实现。
The fuzzy c-means algorithm (FCM) is one of widely used clustering algorithms.
模糊c均值算法(FCM)是经常使用的聚类算法之一。
The C-means algorithm is treated as a new search operator in order to improve the convergence speed.
算法还集成了一种C -均值搜索算子,用于加快收敛速度。
A clustering algorithm for Chinese documents based on the spherical fuzzy c-means algorithm is presented.
提出一种基于球形的模糊c -均值算法的中文文本聚类方法。
For increasing classifiers classification rate, We make use of the fuzzy theories to K-means algorithm again.
基于K -均值算法的模糊分类器具有很好的分类效果,用它可以很准确的对训练样本进行分类。
Traditional K-Means algorithm is sensitive to the initial centers and easy to get stuck at locally optimal value.
传统K均值算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优值。
Researched the unsupervised anomaly detection methods based on clustering analysis, improved the K-means algorithm.
研究了基于聚类分析的非监督式异常检测方法,并改进了K均值算法用于聚类分析。
Without considering the spatial information of images, the original fuzzy C-means algorithm is very sensitive to image noise.
由于原始的模糊c -均值聚类算法没有考虑图像的空间信息,算法对图像中的噪音点十分敏感。
Mahout provides driver programs for all of the clustering algorithms, including the k-Means algorithm, aptly named the KMeansDriver.
Mahout为所有集群算法都提供了驱动程序,包括k - Means算法,更合适的名称应该是KMeansDriver。
This paper discusses the fuzzy C-means algorithm (FCM), one of the fuzzy clustering methods and clustering validity measurements.
本文讨论了模糊聚类中的模糊C均值算法和聚类有效性测度。
Local optimality and initialization dependence disadvantages of K-means are analyzed and a PSO-based K-means algorithm is proposed.
针对K均值聚类算法依赖于初始值的选择,且容易收敛于局部极值的缺点,提出一种基于粒群优化的K均值算法。
The action potentials' features are extracted by PCA, the action potential classification is implemented by the improved K-means algorithm.
该方法采用PCA提取动作电位特征,使用改进K均值算法实现动作电位分类。
The initial clustering center of the traditional K-means algorithm was generated randomly from the data set, and the clustering result was unstable.
传统的K均值算法的初始聚类中心从数据集中随机产生,聚类结果很不稳定。
Based on fuzzy C-Means algorithm (FCM) and fuzzy Min-Max Neural Networks, an integrated algorithm for fuzzy pattern recognition using hypercube set was proposed.
结合模糊c均值算法(FCM)与模糊最小最大神经网络算法,提出一种基于超长方体集的模糊模式识别算法。
K-means algorithm has some deficiencies. The number K must be pointed and its effectiveness liable to be effected by isolated data and the input sequence of data.
均值算法的聚类个数k需指定,聚类结果与数据输入顺序相关,而且易受孤立点影响。
A dot density weighted fuzzy C-means algorithm is proposed by using density size of data dot regarded as weighted value and distributing characteristic of datas own.
利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊c -均值算法。
In this article we combine the fuzzy C-means algorithm with fuzzy measures and fuzzy integrals and apply the two algorithms to the medicinal pathological image segmentation.
本文将经典的模糊c -均值聚类算法和模糊测度和模糊积分结合起来,并将这两种算法应用于医学病理图象的分割。
This article analyzes the deficiency of K-means algorithm and improves the algorithm with relative best partition and weight in the computation of distance of clusters and cases.
针对K -平均算法存在的缺陷,通过引入相对最佳随机划分方法以及在计算样本与簇中心时的权重,改进了K -平均算法。
Although the traditional K - means algorithm has good convergence rate and can be realized easily, it can easily be trapped in a local optimum, and it is sensitive in initial setting.
传统的K-均值方法用于聚类具有收敛速度快、算法实现简单等特点,但容易陷入局部最优,并对初始解敏感。
Clustering algorithms are the typical algorithms in the data mining, the K-means algorithm is the most basic algorithm, which has produced many classics and highly effective algorithms.
聚类是数据挖掘中的典型算法,其中的K -均值算法是最基本的算法,由该算法产生了许多经典而高效的算法。
Inspired by the clone selection principle and memory mechanism of the vertebrate immune system, a hybrid algorithm combining C-means algorithm and artificial immune algorithm is presented.
通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫c -均值混合聚类算法。
Secondly, the anomaly detection model based on K-means algorithm and SOM network is constructed. It can classify the normal and abnormal network data stream so better to detect the unknown attack.
提出了一种k-均值聚类算法和SOM自组织神经网络算法相结合的异常检测模型,使得系统可以更好的分类正常数据流和异常数据流,以此来防范未知的攻击。
Given a set of vectors, the next step is to run the k-Means clustering algorithm.
创建了一组矢量之后,接下来需要运行k - Means集群算法。
Given a set of vectors, the next step is to run the k-Means clustering algorithm.
创建了一组矢量之后,接下来需要运行k - Means集群算法。
应用推荐