• We don't have to just stick with carbon, we can think about describing other types of atoms as well using this hybridization.

    我们不用局限于碳,我们可以考虑利用杂化轨道,描述其它类型的原子。

    麻省理工公开课 - 化学原理课程节选

  • So you see in the hybrid orbital we actually have a larger lobe on top where they constructively interfered.

    所以你们可以看到在杂化轨道里,我们上面,由很大的一叶相长干涉。

    麻省理工公开课 - 化学原理课程节选

  • If I now hybridize these, if I take these and I make four symmetric, now, these are just the sp3 orbitals.

    如果我将他们杂化,然后形成4个对称的轨道,这就是sp3轨道

    麻省理工公开课 - 固态化学导论课程节选

  • And to do this we're going to introduce valence bond theory, and the idea of hybridization of orbitals.

    在这之前我们要引入价电子成键理论,和杂化轨道的概念。

    麻省理工公开课 - 化学原理课程节选

  • So we can actually constructively and destructively combine these waves, these atomic orbitals to make a hybrid.

    我们可以相长,和相消叠加这些波,这些原子轨道可以杂化

    麻省理工公开课 - 化学原理课程节选

  • All right, what if I were able to mix these orbitals and produce what he called hybrid bonds?

    如果我可以将这些轨道混合起来,成杂化轨道会怎么样呢?

    麻省理工公开课 - 固态化学导论课程节选

  • PROFESSOR: All right, start again, what's the hybridization of the carbon atom?

    好了,再说一遍,碳原子的杂化轨道是什么?

    麻省理工公开课 - 化学原理课程节选

  • All right, so let's consider our methane situation now that we have our hybrid orbitals.

    好,让我们考虑甲烷的情形,既然我们有了杂化轨道

    麻省理工公开课 - 化学原理课程节选

  • So again, if we think about that shape of that carbon atom, it's going to be trigonal planar, 120° it's going to have bond angles of 120 degrees, because we have this set up of having three hybrid orbitals.

    如果我们考虑碳原子的形状,它是平面三角形,键角是,因为我们有这三个杂化轨道

    麻省理工公开课 - 化学原理课程节选

  • So that leaves each carbon with only one hybrid orbital left.

    这样每个碳原子只剩下一个杂化轨道

    麻省理工公开课 - 化学原理课程节选

  • Remember, we didn't hybridize the 2 p y orbital, so that's what we have left over to form these pi bonds.

    记住,我们并没有杂化2py轨道,这是我们剩下的那个行成了π键。

    麻省理工公开课 - 化学原理课程节选

  • So again, looking at the shapes, now we're just combining two, we've got these two equal hybrid orbitals plus these 2 p orbitals here.

    同样,我们看它的形状,现在我们仅仅结合两个轨道,我们得到这两个杂化轨道,和两个p轨道

    麻省理工公开课 - 化学原理课程节选

  • s -- we don't have to hybridize it, it already has only one unpaired electron in a 1 s orbital.

    s-我们不用杂化它,它已经有而且仅有一个未配对电子在s轨道里。

    麻省理工公开课 - 化学原理课程节选

  • So if you picture this as our s p 2 carbon atom where we have three hybrid orbitals, and then one p y orbital coming right out at us.

    如果你把这想象成sp2碳原子,这里有3个杂化轨道,然后一个py轨道朝向我们。

    麻省理工公开课 - 化学原理课程节选

  • Again, the name is very straightforward, it comes from 1 s and 2 p orbital, so it will be s p 2.

    所以,如果我们杂化这三个轨道,我们最后会得到的是sp2杂化轨道,同样,这个名字是很直接的。

    麻省理工公开课 - 化学原理课程节选

  • It doesn't actually have an electron in it, so we don't have to worry about whether it's very high in energy or not, we don't care that it's high in energy.

    你也许会想,为什么我们不杂化这个2py轨道,它里面没有电子,所以我们不用管它的能量。

    麻省理工公开课 - 化学原理课程节选

  • So let's take a look at another case where we have s p 2 hybridization, we can actually also have it happen in carbon.

    它是B2sp2杂化轨道,和H1s轨道的相互作用,让我们看看另外一个。

    麻省理工公开课 - 化学原理课程节选

  • And what happens to this last p orbital is nothing at all, we just get it back.

    我们会得到三个杂化轨道,最后一个p轨道

    麻省理工公开课 - 化学原理课程节选

  • The reason that it's a sigma bond is sp3 because the s p 3 hybrid orbital is directly interacting with the 1 s orbital of the hydrogen atom, and that's going to happen on the internuclear axis, they're just coming together.

    它是sigma键的原因,是因为,杂化轨道直接和氢原子1s轨道相互作用,它们作用发生在核间轴上,它们会到一起。

    麻省理工公开课 - 化学原理课程节选

  • And if we hybridize these orbitals in carbon, what we end up with is having two hybrid orbitals, and then we're going to be left with two of our p orbitals that are each going to have an electron associated in them.

    如果我们杂化碳原子里这些轨道,我们能得到两个杂化轨道,另外剩下两个p轨道,每个里面有一个电子。

    麻省理工公开课 - 化学原理课程节选

  • So, this forms a tetrahedron, which forms the sp3 hybrid orbitals.

    这就形成了一个四面体,它是由sp3杂化轨道形成的。

    麻省理工公开课 - 固态化学导论课程节选

  • If we think about bringing in those last two carbons, what you can see is that for every carbon, two of its hybrid orbitals are being used to bond to other carbons.

    如果我们考虑引入最后两个碳原子,你会看到的是对于每个碳原子,其中的两个杂化轨道,和另外的碳原子成键。

    麻省理工公开课 - 化学原理课程节选

  • So if we go ahead and hybridize our p orbitals and our s orbitals, we'll switch from having these original orbitals to having something called hybrid orbitals.

    如果我们,杂化p轨道和s轨道,我们会从原来的轨道,变成一个叫杂化轨道的东西。

    麻省理工公开课 - 化学原理课程节选

  • We got them from combining again, 1 s orbital and the 3 p orbitals. If we hybridize these, what we end up seeing are these four hybrid orbitals.

    我们把1s轨道,和3p轨道结合而得到它们,如果我们杂化它们,我们最后会看到4个杂化轨道

    麻省理工公开课 - 化学原理课程节选

  • So it's along the bond axis and it's between a carbon s p 2 hybrid, and then the hydrogen is just a 1 s orbital that we're combining here.

    所以它是沿着键轴方向的,而且这里是一个碳sp2杂化轨道,和一个氢的1s轨道的结合,在这里我们可以合并他们。

    麻省理工公开课 - 化学原理课程节选

  • And if we think about the six hydrogens, now each of those are going to bind by combining one of the carbon hybrid orbitals to a 1 s orbital of hydrogen.

    如果我们考虑有六个氢原子,每个都会合起来,碳杂化轨道成键,每个氢的1s轨道

    麻省理工公开课 - 化学原理课程节选

  • So this is a little bit trickier to look at and see what it means, but essentially we have two hybrid orbitals, which are shown in blue here, and then we have one p orbital that's left alone that's going up and down on the page.

    看这个图肯能会觉得比较诡异,但本质上,骂我们有两个杂化轨道,这里用蓝色表示,还有剩下一个p轨道,在图中上下方向上。

    麻省理工公开课 - 化学原理课程节选

  • And hybrid orbitals are all going to be completely equal, and lower in energy than the p orbital.

    杂化轨道是完全相等的,你会注意到它们的能量比s轨道高,比p轨道低。

    麻省理工公开课 - 化学原理课程节选

  • So in s p 2 hybridization, instead of combining all four, we're just combining two of the p orbitals with the s orbital.

    这样就能得到sp2杂化,在sp2杂化中,不是四个轨道结合。

    麻省理工公开课 - 化学原理课程节选

  • We can still hybridize all these orbitals, however, so we can still form four hybrid orbitals, which are again, 2 s p 3 hybrid orbitals.

    但我们仍然可以杂化这些轨道,所以我们还是可以形成4个杂化轨道,同样的,是2sp3杂化轨道

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定