• That is the difference between these two energy states.

    这个能量就是两能级之间的能量差。

    麻省理工公开课 - 化学原理课程节选

  • So whenever we're thinking about energy states, it's lways more stable to be more low in an energy well, so that's why it makes sense that it's favorable, in fact, to have an electron interacting with the nucleus that stabilizes and lowers the energy of that electron by doing so.

    负的能量越多,能级越低,无论何时,能级总是越低越稳定,所以这就是为什么电子更,倾向于通过和原子核相互作用,来稳定并降低电子的能级。

    麻省理工公开课 - 化学原理课程节选

  • In other words, these energy states are not filling just in ascending n number.

    也就是说,能态不只是,按照n的升序进行排列的。

    麻省理工公开课 - 固态化学导论课程节选

  • I think most and you are familiar with the Aufbau or the building up principle, you probably have seen it quite a bit in high school, and this is the idea that we're filling up our energy states, again, which depend on both n and l, one electron at a time starting with that lowest energy and then working our way up into higher and higher orbitals.

    我认为你们大多数熟悉奥弗堡,或者构建原理,你们可能,在高中见过它,又一次,这是我们填充能级的观点,与n和l有关,一个电子每次从,最低的能级开始,然后以我们的方式上升到,更高更高的轨道。

    麻省理工公开课 - 化学原理课程节选

  • But, in fact, we can also talk about the ionization energy of different states of the hydrogen atom or of any atom.

    但实际上我们也可以讨论氢原子,或者其它任何原子的其它能级的电离能。

    麻省理工公开课 - 化学原理课程节选

  • Hess' Law states that for any chemical reaction, the energy change is path independent.

    盖斯定律表明,对于任意化学反应,能量变化并非是路径依赖的。

    麻省理工公开课 - 固态化学导论课程节选

  • And you have to ask yourself is the energy difference here, the delta E in the electronic states, how does that compare with the E of visible light?

    所以我们会问,是由于能量的不同么,例如deltaE在电子能态的不同,那如何把E与可见光联系起来?

    麻省理工公开课 - 固态化学导论课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定