The selection of the kernel function parameter and error penalty factor affected the precision of the support vector machine (SVM) significantly.
核函数参数和误差惩罚因子的选择对支持向量机模型(SVM)的精度有较大影响。
In the paper, GBGM-GA is seen the optimization technique combining KPCA and GA, and is suitable to the optimization selection of kernel function parameter.
本文采用高斯变异遗传算法作优化技术,实现了KPCA和GA的集成,适合核函数参数的优化选择。
Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
最后讨论了离散尺度与小波核函数的构造,核函数选择与核参数学习。
For SVM, in this paper, a kernel function selection and parameter adjustment algorithm are presented. It can get optimal parameter adjustment in a given training set.
对于SVM,本文给出了一个核函数选择与参数调整的算法,它能够对给定训练集得到最优的参数调整。
For SVM, in this paper, a kernel function selection and parameter adjustment algorithm are presented. It can get optimal parameter adjustment in a given training set.
对于SVM,本文给出了一个核函数选择与参数调整的算法,它能够对给定训练集得到最优的参数调整。
应用推荐