Bayesian network classifier is one of the main research methods in data mining and KDD domain.
贝叶斯网络分类器是数据挖掘与知识发现领域研究的主要方法之一。
Association rules mining is an important technique in data mining and KDD, but some problems exist in the association rules mining based on support and confidence.
关联规则挖掘是数据挖掘和知识发现中一门重要技术,但基于支持度-置信度框架的关联规则挖掘存在一些问题。
KDD and data mining was used in agriculture, but for the characteristics of agriculture area, normal data mining methods can't apply efficiently.
KDD和数据挖掘技术在农业中得到应用,由于农业领域本身的特点,通常的数据挖掘技术得不到有效应用。
So in facing of challenge of "Much data, but little information", there come Data Mining (DM) and Knowledge Discovery in Database (KDD).
因此,面对“数据丰富,但信息贫乏”的挑战,数据挖掘和知识发现技术应运而生。
Data mining is an important problem in KDD, and Rough set as a theory of set with fuzzy boundary is widely applied to infer classification rules from decision system.
数据挖掘是知识发现领域的一个重要问题,粗糙集理论是一种具有模糊边界的数据挖掘方法,它被广泛应用于决策系统的分类规则提取中。
Data mining is an important problem in KDD, and Rough set as a theory of set with fuzzy boundary is widely applied to infer classification rules from decision system.
数据挖掘是知识发现领域的一个重要问题,粗糙集理论是一种具有模糊边界的数据挖掘方法,它被广泛应用于决策系统的分类规则提取中。
应用推荐