A recursive prediction error algorithm which converges fast is applied to tra.
采用了收敛速度较快的递推预报误差算法训练神经网络。
To overcome the slow convergence of the BP algorithm, recursive prediction error algorithm is proposed, which can train both the weight and the bias.
本文介绍了动态对角递归网络,并针对BP算法收敛慢的缺点,将递推预报误差学习算法应用到神经网络权值和域值的训练。
The structure of a partially connected feed forward neural network and the training algorithm based on the recursive prediction error are constructed.
构造了局部连接的前馈神经网络的结构和基于递推预报误差的网络训练算法;
A cost function is presented, and by applying Gaussian-Newton type recursive prediction error based method, a stable and efficient online frequency estimation algorithm is derived.
在此基础上,建立了最小方差损失函数,并结合高斯·牛顿预测误差方法,提出了稳定的,高性能的,在线的复频率直接估计算法。
A cost function is presented, and by applying Gaussian-Newton type recursive prediction error based method, a stable and efficient online frequency estimation algorithm is derived.
在此基础上,建立了最小方差损失函数,并结合高斯·牛顿预测误差方法,提出了稳定的,高性能的,在线的复频率直接估计算法。
应用推荐