零相位误差跟踪控制器(ZPETC)的提出部分地解决了这一问题。
Zero Phase Error Tracking Controller (ZPETC) was used to partially solve the problem.
零相位误差跟踪控制器作为前馈跟踪控制器,提高了快速性,使系统实现准确跟踪。
Zero phase error tracking controller was served as the feed-forward controller to improve the fast tracking performance of the system, thus exactly tracking of the system was implemented.
零相位误差跟踪控制器作为前馈跟踪控制器,提高了快速性,使系统实现准确跟踪;
The zero phase error tracking controller is designed to ensure that the system has fast tracking performance and implements exactly tracking;
在此基础上设计的模糊自适应控制器能够保证整个闭环系统稳定且跟踪误差收敛到零的一个邻域内。
The fuzzy adaptive controller designed based on this method can guarantees that the closed-loop system is globally stable and the tracking error converges to a neighborhood of zero.
然而它与一般滑模控制器相比有较大的跟踪误差。
However there has larger tracking error in the FNNSMC than that in the SMC.
斜坡根据密度跟踪误差和误差变化情况,通过模糊逻辑对控制器参数进行调整,确定了测量速度。
The ramp metering rate is determined by the PID controller whose parameters are tuned by fuzzy logic according to the density tracking error and error variation.
采用动态对角回归神经网络作为辨识器和控制器,实现了机器人轨迹跟踪的最小误差控制。
Using dynamic recurrent neural networks as identification and controller, the minimum error control of robot tracking the idea locus is implemented.
仿真结果表明:用该方法设计的控制器得到的位置跟踪误差迅速渐近趋于零,达到了较好的位置控制性能。
The simulation results show that this proposed controller can obtain better position control characteristic and the position tracking error goes to zero asymptotically.
控制器参数由参考输入、控制输入和对象输出的滤波值及跟踪误差计算而得。
The controller parameters are generated by using reference inputs, filtered outputs of control inputs and object outputs, and tracking errors.
结果表明该控制器能够补偿系统的非线性因素,保证了系统的稳定,减小了跟踪误差。
The experiment results demonstrate that the controller can compensate the nonlinear factors in the system, guarantee the system stability and diminish the tracking error.
所设计的控制器能保证输出跟踪误差收敛到零的任意小邻域内,且所有信号全局有界。
The proposed controller can assure that not only the output tracking error converges to an any small neighborhood of zero but all the signals are global bounded.
利用一个自适应控制器跟踪信息信号的误差对产生混沌载波的发射系统进行参数调制。
The parameter of the transmitting system procreated chaotic carrier is modulated by errors from an adaptive controller and information signal.
通过速度控制器对负载扰动进行估计和补偿,消除了负载扰动可能带来的稳态跟踪误差。
The load disturbance is estimated and compensated by the speed controller, which effectively removes the static tracking error that would be caused by the disturbance without compensation.
自抗绕控制器由三部分组成:跟踪微分器、扩张状态观测器和非线性状态误差反馈控制律。
The auto-disturbance rejection controller is composed of three parts: tracking-differentiator, extended state observer and nonlinear state error feedback control law.
跟踪控制器采用增量PID控制来减小累积误差的影响,且便于DSP的实现。
Incremental PID controller is applied as tracking controller in order to decrease influence of accumulated errors and to realize conveniently on DSP.
证明了新的控制器一方面保证了运动的完全跟踪,另一方面保证了力跟踪误差是有界的且界的大小是可以调节的。
It is proven that the new controller can guarantee the perfect motion tracking. On the other hand, the force tracking error is bounded with the bound being adjustable.
设计了基于相对误差的三维非线性跟随弹编队控制器,得到相应的跟踪控制律。
Furthermore, a three-dimensional nonlinear formation controller based on relative error is designed and the tracking control law is obtained.
常规控制器对系统给出粗略控制,神经网络控制器给出补偿信号来进一步减小系统输出跟踪误差。
The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error.
根据跟踪误差改变控制器参数以精确地跟踪设定电流;
Variable structure control strategy correspond to tracking error was implemented to reach ideal current with high precision.
采用文中给出的鲁棒控制器,能保证机械臂的实际跟踪误差在有限时间内减少到预先给定的包含原点为内点的区域。
Results shows the following fact: it can be guaranteed that the practical tracking error in operating process of rigid robot manipulator attenuates to the given region around the origin.
在设计的控制器中,采用这种动态边界层,以使得跟踪误差收敛到这种边界层所确定的区域,保证闭环系统在给定时间区间上可实现完全跟踪。
We use a dynamic boundary layer for the controller design, where the initial rectified attractor is introduced and adopted for forming the boundary layer.
在设计的控制器中,采用这种动态边界层,以使得跟踪误差收敛到这种边界层所确定的区域,保证闭环系统在给定时间区间上可实现完全跟踪。
We use a dynamic boundary layer for the controller design, where the initial rectified attractor is introduced and adopted for forming the boundary layer.
应用推荐