采用一种利用模糊理论的自适应数据融合算法。
A fuzzy theory based adaptive data fusion algorithm is used.
针对这个问题,分析了簇内数据误差成因,提出了一种改进后的自适应数据融合算法。
Aiming at this problem, this paper analyzed the reason of the errors in WSN, and presented an improved adaptive data fusion algorithm.
提出了一种利用模糊逻辑控制器来在线调节卡尔曼滤波器的自适应数据融合方法,并着重研究了其在GPS/INS组合导航中的应用。
This paper presents an adaptive data fusion method which uses a fuzzy logic controller to online adjust the Kalman filter, and focuses on its application to the integrated GPS/INS navigation.
基于灰色理论和自适应数据融合技术的研究,提出一种基于自适应数据融合的新型灰预测GM(1,1)模型,并对整个建模过程进行了理论推导。
A new modeling method of GM (1, 1) was proposed based on the research of grey theory and adaptive data fusion. The whole modeling procedure of this method was established.
数据融合方法采用经典的自适应加权融合估计算法,配合智能判别技术,增强了火灾特征识别的可靠性。
Combined with intelligent recognition technology, data fusion technology adopts the classical self-adapting weighting fusion algorithm to increase the reliability of fire characteristics recognition.
基于数据融合的思想,提出一种非线性系统的自适应神经网络模糊控制器的设计方法。
Based on data fusion method, an adaptive neuro-fuzzy controller of nonlinear systems is presented.
应用自适应加权数据融合技术,实现两种传感器在功能上的互补。
The paper introduces the application of adaptive weighting data fusion technology to realize the complementation for the function of two kinds of sensors.
针对多传感器测量数据中含有的噪声,提出一种基于多传感器支持度和自适应加权时空融合算法。
According to the noise contained in many sensor data, an algorithm based on support degree and adaptive weighted spatial-temporal fusion of the multi-sensor is proposed.
本文探索性地应用多传感器数据融合技术解决输电线网的故障类型识别问题,力求寻找一条自适应继电保护和智能故障诊断的新途径。
Using data fusion technique to realize fault discrimination of transmission lines, this work tried to find a new approach of adaptive relay protection and intelligent fault diagnosis on power system.
针对这一情况,本文应用了一种基于自适应加权数据融合的灰色优势分析方法对传感器数据进行处理。
Aiming at this case, this paper USES a method of grey superior analysis based on adaptive weighted data fusion to process the sensor data.
研究了有关分批估计、自适应加权和方差估计算法在多传感器数据融合中的有效性、准确度和实时性。
The validity, accuracy and actual time of the algorithm for batched-estimation, self-adaptive weighting and variance-estimation are studied in multi-sensors data fusion.
最终给出了一种基于测量方差自适应的多传感器数据融合算法。
Finally, a new algorithm of multi-sensors fusion based on the variance of the measured error adaptive is given.
本文应用了一种基于自适应加权数据融合的灰色优势分析方法对多传感器数据进行处理。
The validity, accuracy and actual time of the algorithm for batched-estimation, self-adaptive weighting and variance-estimation are studied in multi-sensors data fusion.
第四章提出了一种具有良好实时性、自适应性、稳健性和准确性的滑块采样数据融合预估方法。
The fourth chapter presents the adaptive prediction theory with shift sampling method to speed up the measuring procedure.
对不同类别的数据进行实时自适应分级,将紧急数据迅速融合并传输给用户,达到延时和融合效率的折衷。
The data are classified in realtime adaptively, and the urgent data are aggregated and transmitted rapidly that obtains a tradeoff between delay and aggregation efficiency.
本文应用了一种基于自适应加权数据融合的灰色优势分析方法对多传感器数据进行处理。
A method of grey superior analysis based on adaptive weighted data fusion is used to process the multi-sensors data.
本文应用了一种基于自适应加权数据融合的灰色优势分析方法对多传感器数据进行处理。
A method of grey superior analysis based on adaptive weighted data fusion is used to process the multi-sensors data.
应用推荐