提出了融合能量代价函数的概念及基于代价函数的小波包能量法,并将其应用于水声信号的识别。
The concept of fusing energy cost function and method based on the function are proposed, the method was used for the recognition of underwater acoustic signal.
新算法以融合能量代价函数为标准,在整个小波库中构造最优小波包基,从小波包基上提取信号最有价值的特征值。
The new arithmetic constructed the best wavelet packet based on the wavelet library with the criterion of fusing energy cost function and contract the most valuable features of the signals.
采用自由空间模型,通过控制探测数据的扩散范围,引入路径代价函数实现能量的高效利用。
By controlling diffusion of exploratory messages and making use of cost function, the energy consumption can be more efficient in free space model.
通过最小化能量方案极小化代价函数,同时通过定点交替迭代策略将非线性方程进行线性化处理,快速恢复图像。
The cost functions are minimized by alternate minimization scheme. The nonlinear equations are linear by fixed-point iteration scheme.
通过最小化能量方案极小化代价函数,同时通过定点交替迭代策略将非线性方程进行线性化处理,快速恢复图像。
The cost functions are minimized by alternate minimization scheme. The nonlinear equations are linear by fixed-point iteration scheme.
应用推荐