给出了谱配置方法空间半离散格式的稳定性和误差估计。
The stability and convergence of spectral collocation method spatial semi-discretization are given.
同时,对这种离散格式的截断误差给出了简单的数值分析。
In addition, a brief numerical analysis to the error of this discrete scheme is given.
给出了此方法的全离散格式,并分析了该全离散格式的收敛性。
A fully-discrete scheme is given and the convergence of the scheme is analyzed.
第二节给出所研究的具有初边值条件的一维抛物型方程组及其离散格式。
Section two gives the notations , lemmas and discrete schemes of the system of parabolic equations.
讨论抛物型方程的混合元的各向异性分析,给出了半离散格式的误差估计。
In this paper we present the parabolic equation mixed element anisotropic analysis, we give error estimate of the semi-discrete scheme.
讨论线性三角形单元对曲边区域上半离散格式下抛物问题的有限元误差分析。
In this paper the linear triangular finite element approximation to the Parabolic Problem in the domain with curved boundaries is studied.
并用此单元求解线性抛物型方程,给出半离散格式和全离散格式的误差估计。
At first we give the energy norm and L_2-norm estimates of anisotropic bilinear finite element, then we prove the estimates of semidiscrete form and fulldicrete form of linear parabolic problem.
本文导出一种离散格式,它对不再要求连续的位移函数能够给出较高的计算精度。
A discrete form is given, which proved to be with high accuracy even when the displacement lost continuity.
根据输送边界条件,给出了动态模型方程的数值计算方法、管道离散格式、参数存储方法和差分方程。
Based on transmission boundary condition, gives calculation method for value of dynamic model equation, pipeline discrete form, memory method for coefficient and difference equation.
对流项、扩散项和非恒定项的离散格式均具有二阶精度,利用SIMPLE算法处理压力-速度耦合。
The discretized schemes of the convective fluxes, diffusive fluxes and unsteady term are all of second -order accuracy. The SIMPLE algorithm is adopted to deal with the pressure-velocity coupling.
在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived.
基于三维非稳态导热微分方程,用控制容积法建立了火灾环境下钢筋混凝土三维非稳态温度场的离散格式。
Base on the three-dimensional heat conduction differential equation, the discrete formulation of three-dimensional unsteady temperature field under fire is established by the volume-control method.
该性能模型对基于有限元、有限体积等其他局部离散格式的大型并行计算应用的负载平衡能力评估也具有参考价值。
And the model given in this paper is also useful for those parallel applications with local schemes such as finite element and finite volume.
然后为了能有效求解所得模型,本文利用有限差分方法构造了一种半隐式的数值离散格式,同时给出了模型中的几个重要参数的估计。
Furthermore, in order to solve the proposed model efficiently, we construct a semi-implicit numerical scheme by using finite difference method and estimate some important parameters.
确定了本文数值模拟所采用的网格的生成技术,对流扩散项的离散格式,压力修正与速度修正方法,以及非线性代数方程组的求解方法。
The grid generation technique, difference scheme of convective and diffusive terms, pressure and velocity correction methods and arithmetic of nonlinear equations are determined.
文中给出了流函数方程及边界条件的坐标转换形式和离散格式,采用了强隐式(SIP)迭代法,分别对具有弓形和半弓形突体的直管进行了计算。
In this paper, the transformed forms of the flow function equation and boundary conditions and their difference expressions are given, and Strongly Implicit Procedure (SIP) iteration is used.
在rpc样式中,传输数据被编组为使用特殊XML有效载荷格式(称为SOAP编码)的离散数据类型。
In the RPC style, the data to be transmitted is marshalled into discrete data types in a special XML payload format (called the SOAP encoding).
在RPC方式中,传输的数据使用专门的xml符合格式(称为SOAP编码)编组成离散的数据类型。
In the RPC style, the data to be transmitted is marshaled into discrete data types in a special XML payload format (called the SOAP encoding).
该方法将原参数非定常欧拉方程组重新组合成以广义黎曼变量表示的欧拉方程组,再用二点二步迎风格式离散求解。
Euler equations of generalized Riemann variable are derived from unsteady primitive variable Euler equations and solved by using two - a point-two-step upwind finite difference method.
本文讨论带时滞观测线性离散系统的滤波问题,提出利用联合分布函数,得到滤波递推格式。
In this paper, the recursive filtering problem for linear discrete systems with delay observations is concerned. By using joint distribution function, we obtain the recursive form of the filter.
在该计算格式中,实现了几何形状复杂的多维问题向一维问题的转换,从而提高了有限元离散节点的计算精度。
Using this computational format the transformation frame multiple-dimensional problem with complex geometry shape into one-dimensional problem is realized, so that computation precision is increased.
本文在一个不规则网路上离散拉普拉斯运算元的差分格式,不但能满足相容性及极值原理,而且还具有误差极少性质。
The paper gave disperse pattern of laplace function under in - uniform grid, which fulfills acceptance character and error maximization theory. it also has fulfills the character of extreme value.
本文中,提出了若干个离散的等谱特征问题,导出了相应的1 + 1、2 + 1维孤立子方程,并利用屠格式对方程族的结构作了近一步的研究。
In this paper, we formulated some discrete integrable systems and gave the corresponding lattice equations in 1 + 1, 2 + 1 dimensions and associated Hamilton structure by means of the trace identity.
本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式。
In this paper, the second order fully discrete difference method for a partial integro-differential equation is considered.
最后,对上述的两层有限差分格式在一定条件下进行了离散随机游走的解释。
Finally, the finite difference scheme was interpreted by a discrete random walk model under a certain condition.
对一类特殊的非线性反应扩散方程进行完全离散,得到非线性的有限差分格式。
In the article, the fully discrete finite difference scheme for a special nonlinear reaction-diffusion equation is established.
本文给出了一种基于块脉冲算子的离散逼近格式。
In this paper, a discrete approximation scheme based on block pulse operator is given.
对浓度方程在时间上进行了一阶和二阶离散,采用间断有限元格式;
The first order and the second order of fully discrete discontinuous finite element schemes are proposed for the concentration equation.
计算过程中采用二阶迎风格式离散控制方程。
Governing equations were discrete with two order upstream scheme.
计算过程中采用二阶迎风格式离散控制方程。
Governing equations were discrete with two order upstream scheme.
应用推荐