矩阵的分解是矩阵论中的重要内容,是研究矩阵的基础,在很多实际应用中起着重要作用。
The resolving of matrix is the important content in the matrix theory, is a foundation of studying matrix, play an important role in much practical application.
正定矩阵在矩阵论中占有十分重要的地位,在实际中也有广泛的应用价值。
Positive definite matrix occupies a very important position in matrix theory, and has great value in practice.
约束矩阵方程问题广泛地应用在结构分析、控制论、振动理论、非线性规划等许多领域,关于约束矩阵方程问题的研究有着重要的理论和应用价值。
The constrained matrix equation problems have been widely used in many fields such as structural analysis, control theory, vibration theory, nonlinear programming and so on.
约束矩阵方程问题广泛地应用在结构分析、控制论、振动理论、非线性规划等许多领域,关于约束矩阵方程问题的研究有着重要的理论和应用价值。
The constrained matrix equation problems have been widely used in many fields such as structural analysis, control theory, vibration theory, nonlinear programming and so on.
应用推荐