在求得状态转移矩阵后,再建立离散动态事件树,来求得系统故障概率。
After calculating the matrix, the discrete event tree is established and used to solve the system fault probability.
利用拟生灭过程与矩阵几何解的方法求出了系统的稳态平衡条件和稳态概率分布。
By using the Quasi-Birth-Death process and the matrix geometric solution, we obtain the equilibrium conditions of the system and the steady-state probability distribution.
利用矩阵几何解的方法,导出了系统稳态概率向量的明显表达式。
By using the matrix geometric solution method, we derive the explicit expressions for steady-state probability vector.
利用广义转移概率的定义和关键部件优先维修的规则,求得了该系统的状态转移概率矩阵。
Using the definition of generalized transition probability and the rule with priority to repair the key component, the state transition probability of the system is derived.
通过使用强大的矩阵几何方法,可以获得平稳系统状态概率分布。
Using a powerful Matrix-geometric method, the stationary probability distribution for the system states is obtained.
通过拟生灭过程的方法求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值结果。
Using the quasi-birth-and-death process method, we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.
利用马尔科夫过程理论和矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的平均止步率等性能指标。
The matrix form solution of the steady-state probability was derived by the Markfov process method and the matrix solution method. Some performance measures of the system such as th…
利用马尔科夫过程理论和矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的平均止步率等性能指标。
The matrix form solution of the steady-state probability was derived by the Markfov process method and the matrix solution method. Some performance measures of the system such as th…
应用推荐