从无人机的数学模型出发,在特征点作小扰动线性化处理,采用特征值配置法对线性化对象设计线性控制器。
UAV mathematics model is linearized by little disturbance method in equilibrium operating points, then linear controllers are design by applying eigenvalue configuration method to the linear models.
在单机无穷大系统中,运用小扰动分析法推导出了PSVC的一阶惯性模型。
In a single generator infinite system, the one order inertia model of PSVC is derived with the small disturbance method.
利用两流体模型、小扰动原理和线性一阶齐次方程组有解的条件,得到了气液泡状流型下的压力波色散方程。
Using two-flow model, small perturbation theory and solvable conditions of one-order linear equations, a dispersion equation of pressure wave in horizontal air-liquid bubbly flow was proposed.
同时采用小扰动法推导了俯仰通道和滚动通道的简化模型,为空气动力和姿控发动机推力复合控制系统进行初步设计提供了依据。
What′s more, according to the method of little disturbance, the simplified model of pitching and rolling plane is derived, so preliminarily combined control system can be designed.
从而,用小偏差的线性数学模型,进行适当修改后,可以用来求取非线性系统在大扰动下的过渡过程。
Consequently, with some modifications, a linear model can be used to calculate the transients of the nonlinear systems under large perturbations.
利用伞-弹系统动力学模型,从工程应用的角度出发,分析了阵风小扰动作用下,子弹姿态的运动特性,并以此为基础给出了末修子弹弹下点的计算模型。
The dynamics model of parachute-munition system is used to analyze the motion characters of submunition under the effect of wind gust, and the calculation model of projective point is presented.
利用伞-弹系统动力学模型,从工程应用的角度出发,分析了阵风小扰动作用下,子弹姿态的运动特性,并以此为基础给出了末修子弹弹下点的计算模型。
The dynamics model of parachute-munition system is used to analyze the motion characters of submunition under the effect of wind gust, and the calculation model of projective point is presented.
应用推荐