19世纪90年代,出现说大脑会产生随机的噪音,然后又不能用确定性混沌理论描述。
In the 1990s, it emerged that the brain generates random noise, and hence cannot be described by deterministic chaos.
世界是非线性的,线性只是其近似描述,混沌的发现表明:某些确定性非线性系统具有内在的随机行为。
The world is nonlinear, linearity is oly its approximate description. The discovery of chaos has showed that some deterministic nonlinear systems exhibit inner random behavior.
基于对混沌信号分析方法的研究,利用混沌序列固有的确定性,我们提出了一种预测干扰的方法。
Based on the analysis and the deterministic characterization of chaotic signals, we propose a interference method by constructing a nonlinear predictive model.
并且对混沌同步的稳定性进行了分析。
Furthermore, the stability of the chaotic synchronization was also analyzed.
本文主要研究确定性随机理论及在混沌密码学中的应用可行性。
This dissertation mainly focuses on the investigation of deterministic randomness theory and its application to chaotic ciphers.
以稳定性理论为基础,针对刘氏混沌系统,给出两种不同的同步方法。
Based on the stability theory, two different synchronization methods are put forward for Liu chaotic systems.
在无任何附加延迟反馈的情况下,观察到声光双稳系统的不稳定性和混沌行为。
Instablity and chaos have been observed in an acoustooptic bistable system without any extra delay device.
混沌是发生在确定性非线性动力学系统中的一种内在随机运动。
Chaos is an inner stochastic motion happening in fixed non-linear dynamics system.
混沌看作是确定性的非线性系统出现的具有内在随机性的解。
Chaos is looked as the solution with internal stochastic property in the nonlinear deterministic systems.
“混沌理论”的诞生,解决了现代物理理论研究中有关传统的确定性理论领域中的随机性现象和传统的随机性理论研究的确定性问题。
The birth of "Chaos theory" helps to solve the problem of determinacy for random phenomena in traditional determinacy theory of modern theory physics and those in traditional random theories.
目的研究动脉局部狭窄时血液流动的稳定性与混沌特性。
AIM To investigate the stability and chaos characteristic of blood flow through a stenotic artery.
由于不确定性和混沌理论的出现,进一步修正了现代科学的决定论,为我们展现了一幅与环境和谐共存的自组织系统。
The emergence of indetermination and chaotic theories further revised the determinism of modern science and emerged a harmonious coexistence picture of self-organizing system with environment.
通过对最佳状态的稳定性分析,论述了该系统存在倍增周期现象和混沌现象的可能性。
They also analysed the model's period-doubling phenomena and existence of chaotic character, and studied model's optimal control problems.
利用修正的短轴承理论模型对转子-轴承系统进行了稳定性、分岔与混沌特性分析。
The stability, bifurcation and chaos of a rotor bearing system is analyzed by using the modified short bearing approach.
混沌是指发生在确定性系统中貌似随机的无规则或不规则运动。
Chaos is a kind of seemingly random, chance or irregular movement, which appears in a definiteness system.
利用李雅普诺夫渐近稳定性定理,很方便地实现了洛沦滋和类洛沦滋系统的混沌自同步。
Using the theory of Lyapunov asymptotic stability, the chaos self synchronization of Lorenz system and analogy Lorenz system are easily realized.
研究了两个不确定性混沌系统的同步化问题。
The synchronization issue of two uncertain chaotic systems is investigated.
“混沌”在数学上是指在确定性系统中出现的随机状态。
以两个相互耦合的不确定性混沌系统为研究模型,基于鲁棒控制,提出了同步方案。
The model of two intercoupling uncertain chaotic systems is studied. Based on robust control, a synchronization scheme is proposed.
分析了一个具有扇区非线性输入且含有参数不确定性以及外部噪声干扰的主从混沌系统的同步控制问题。
This paper analyses the synchronization control for a class of master_slave chaotic systems with parameter uncertainties, external noise disturbances and sector nonlinear input.
混沌是非线性确定性系统中由于内在随机性而产生的外在复杂表现,是一种貌似随机的非随机运动。
Chaos is an outer complex behavior of nonlinear definite system, produced by the system's internal stochastic property, a non-stochastic movement while looks like stochastic.
本文研究了一类时变系统部分变元稳定性以及在混沌同步中的应用。
This thesis is devoted to the investigation of stability with respect to partial variables of a class of time-varying systems and its applications in chaos synchronization.
在确定性的非线性动态系统中,混沌理论是针对不稳定的非周期行为的量性研究。
Chaos Theory is the qualitative study of unstable aperiodic behaviour in deterministic non-linear dynamical systems.
采用结合优化方法与混沌特性分析的自学习方法,在系统优化目标和稳定性之间达到平衡。
A self learning method is presented, which combines the optimizing technology and stability analysis together to achieve a tradeoff between the optimizing objective and system stability.
混沌是一种确定性的非线性运动,它不是随机的但对初始条件敏感依赖,许多领域的研究证实了混沌的存在。
Chaos is a deterministic nonlinear structure, which is not a stochastic process, but sensitive dependence on initial conditions. Studies in numerous fields have shown the existence of chaos dynamics.
研究了一类同时含有平方项和立方项,且带有不确定性参数的受迫非线性振子混沌控制问题。
In this paper, we consider the problem of cha OS control in a class of forced vibration system with both square and cubic nonlinear terms and uncertain parameters.
混沌方法人为参与程度低,稳定性强,可以方便准确地绘出平板各种颤振参数的诺模图。
The chaotic search method needs little manipulation and possesses superior robustness and the nomograms of various flutter parameters of flat plate can be plotted conveniently and accurately.
通过分析系统不动点的稳定性,得到分数阶微分系统存在混沌的解析条件。
The analytical conditions that the fractional-order differential systems remain chaotic are obtained by analyzing the stability of the fixed points of the systems.
本课程主要内容包括:动力学系统的定性理论,混沌及其数值识别,分岔理论,混沌的同步与控制。
The main contents in this course includes: qualitative theory in dynamical system, chaos and its numerical recognition, bifurcation theory, the synchronization and control of chaos.
本课程主要内容包括:动力学系统的定性理论,混沌及其数值识别,分岔理论,混沌的同步与控制。
The main contents in this course includes: qualitative theory in dynamical system, chaos and its numerical recognition, bifurcation theory, the synchronization and control of chaos.
应用推荐