Results demonstrate that the Bayesian network classifiers based on MOR are able to reduce effectively the credit scoring risk.
结果表明,基于MOR的贝叶斯网络分类模型可以有效地减小信用评估风险。
By introducing the novel users' feedback mechanism, the technique adopts an improved Na? Ve Bayesian approach to construct classifiers for specific users to fulfill spam filtering.
该技术通过引入用户反馈机制,使用改进的朴素贝叶斯方法,构建面向特定用户的过滤器,从而进行垃圾邮件过滤。
Furthermore, compared with the general Bayesian classifier ensemble, PEBNC requires less space because there is no need to save parameters of individual classifiers.
此外,与一般的贝叶斯集成分类器相比,PEBNC不必存储成员分类器的参数,空间复杂度大大降低。
Furthermore, compared with the general Bayesian classifier ensemble, PEBNC requires less space because there is no need to save parameters of individual classifiers.
此外,与一般的贝叶斯集成分类器相比,PEBNC不必存储成员分类器的参数,空间复杂度大大降低。
应用推荐