• 许多聚类应用中,数据对象是具有高维稀疏元的特征

    The data sets have features such as high-dimensional, sparseness and binary value in many clustering applications.

    youdao

  • 方法属性稀疏数据挖掘中起重要的作用。

    The algorithm will have important application in high attribute dimensional data mining.

    youdao

  • 高维空间中,由于数据稀疏性,传统方法难以有效地聚类高维数据

    It is hard to cluster high-dimensional data using traditional clustering algorithm because of the sparsity of data.

    youdao

  • 针对属性稀疏数据类问题,提出高属性维稀疏信息系统概念,给出一种新的基于稀疏特征差异动态抽象聚类方法

    The concepts of high attribute dimensional information system are firstly proposed, and a new dynamic clustering method on the basis of sparse feature difference degree is presented.

    youdao

  • 高维数据稀疏性和灾”问题使得多数传统算法失去作用,因此研究高维数据集的聚类算法己成为当前的一个热点。

    The sparsity and the problem of the curse of dimensionality of high-dimensional data, make the most of traditional clustering algorithms lose their action in high-dimensional space.

    youdao

  • 方法属性稀疏数据挖掘中起重要的作用。

    The algorithm will have important application in high attribute dimensional dat

    youdao

  • 方法属性稀疏数据挖掘中起重要的作用。

    The algorithm will have important application in high attribute dimensional dat

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定