在地震波传播的数值模拟中,在有限区域建立吸收边界条件是一个很重要的问题。
In the numerical simulation of the wave equation, to develop an absorbing boundary condition in the finite domain is a very important problem.
该方法克服了小倾角差分偏移的各种困难,实现了快速、准确的地震资料偏移的高分辨率处理以及地震波传播的数值模拟。
This method solves the shortcomings of small dip difference migration and realizes rapid and accurate high resolution process of seismic data m…
复杂介质中地震波的传播多是通过求取单程或双程波动方程的数值解进行模拟的。
Propagation of seismic wave in complex medium is mostly simulated by numeric solution of oneway or two-way wave equation.
本文主要是通过波场数值正演模拟技术来研究粘弹性各向同性介质中地震波的传播问题。
In this paper, seismic wave propagation in viscoelastic isotropic media is mainly addressed by the technology of wave field numerical simulation.
地震波数值模拟是地震勘探的基本内容,对于认识和研究地震波在介质中的传播具有重要的作用。
Numerical simulation of seismic wave, which has an important role for researching the propagation of seismic wave in media, is the basis of seismic exploration.
复杂介质中地震波的传播多是通过求取单程或双程波动方程的数值解进行模拟的。
The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations.
波动方程数值模拟实质上是根据地下介质条件求解地震波波动方程,模拟的地震波场包含地震波传播的各种信息。
Wave equations numerical simulation is actually calculate the solution of seismic waves 'equations which contains all information of seismic waves 'propagation under different medium situation.
波动方程数值模拟实质上是根据地下介质条件求解地震波波动方程,模拟的地震波场包含地震波传播的各种信息。
Wave equations numerical simulation is actually calculate the solution of seismic waves 'equations which contains all information of seismic waves 'propagation under different medium situation.
应用推荐