把非线性薛定谔方程转化成二阶差分方程,通过迭代此差分方程得到透射谱。
The nonlinear Schrdinger equation leads to a second order nonlinear difference equation, and we obtain transmission spectrum of wave by iterating the difference equation.
第三章利用矩阵理论与重合度理论,讨论了一类非自共轭非线性二阶差分方程周期解的存在性问题。
Chapter 3 is centered around the existence of periodical solutions for non self-adjoint nonlinear second order difference equations by invoking matrix theory and coincide degree theory.
本篇硕士论文主要研究了一般形式的二阶和三阶非线性和线性差分方程的边值问题。
This thesis mainly studies the problem of the boundary value of second-order and third-order nonlinear and linear difference equation.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated. Existence and uniqueness results are obtained.
本文讨论一类二阶奇摄动非线性微分差分方程组的边值问题。
In this paper, We discuss a class of boundary Value problems of second order singular perturbed nonlinear differential difference systems.
该模型的数学形式是一个非线性二阶常微分方程,利用有限差分方法进行求解。
The mathematical expression of this model is a second order non linear ordinary difference equation.
采用时间和空间均为二阶精确的有限差分方法,将偏微分方程进行差分化。这样,空间的电磁场可由时间域有限差分法(FDTD)来求解。
The TM set of equations can be solved using a finite difference time domain (FDTD) approximation that is second-order accurate in both space and time.
该文讨论了一类二阶非线性中立型差分方程解的振动性,扩充并改进了此类方程的已有结果。
The autheors obtain results on the oscillations of solutions of a second order nonlinear neutral difference equation.
对一类二阶非线性差分方程的解给出了几个振动或非振动的判定定理,并举例说明了定理的应用。
Some new criteria of oscillation or non-oscillation are presented for certain nonlinear second order difference equations. Several examples are given to illustrate the results.
研究了一类具有多个变滞量的变系数的二阶中立型差分方程的解的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件。
The oscillation problem for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients was studied.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
研究了一类具有多个变滞量的变系数的二阶中立型差分方程的解的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件。
The oscillation for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients are studied.
研究了一类具有多个变滞量的变系数的二阶中立型差分方程的解的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件。
The oscillation for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients are studied.
应用推荐